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Collisions between complex nuclei may give rise to their total or partial fusion. The latter case is found
experimentally to gain importance when one of the colliding nuclei is weakly bound. It has been commonly
assumed that the partial fusion mechanism is a two-step process, whose first step is the dissociation of the
weakly bound nucleus, followed by the capture of one of the fragments. To assess this interpretation, we
present the first implementation of the three-body model of inclusive breakup proposed in the 1980s by
Austern et al. [Phys. Rep. 154, 125 (1987)] that accounts for both the direct, one-step, partial fusion and the
two-step mechanism proceeding via the projectile continuum states. Contrary to the widely assumed
picture, we find that, at least for the investigated cases, the partial fusion is largely dominated by the direct
capture from the projectile ground state.
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Introduction.—The understanding of fusion in collisions
of composite nuclei is a problem of utmost importance in
various fields and applications, such as in reaction networks
taking place in astrophysical scenarios [1], the production
of new elements (e.g., Refs. [2,3]), and energy production
[4], among others.
The first theoretical explanation of fusion started with the

seminal work of Bohr [5], who described the process as the
complete merging of the colliding nuclei, giving rise to a
compound nucleus, which eventually dissociates by par-
ticle and gamma-ray emission. This appealing picture was
soon found to break down in a number of situations. For
example, in the 1930s, Oppenheimer and Phillips [6] tried
to explain the excess of protons in sub-Coulomb deuteron-
induced reactions by invoking a partial absorption mecha-
nism, in which only the neutron was captured by the target,
favored by the weak-binding and large spatial extension of
the deuteron. The idea of partial fusion was revived by Baur
and collaborators in the 1970s to account for the large
yields of proton singles in deuteron induced reactions at
Ed ¼ 25 MeV on a number of targets [7,8]. The process
was described as a two-step reaction, and coined breakup
fusion (BF), in which the first step is the breakup of the
projectile into pþ n, and the second step is the absorption
of the neutron by the target nucleus. More refined theories
were subsequently developed by Udagawa and Tamura [9]
and Ichimura, Austern, and Vincent (IAV) [10]. More
recently, the BF mechanism has been invoked to explain
the phenomenon of complete fusion suppression observed
in the above-barrier nuclear collisions with weakly bound
nuclei, such as 6;7;8Li and 9Be [11–17]. This suppression
amounts up to ∼30% for these nuclei, is roughly indepen-
dent of the target nucleus, and is typically accompanied by

significant yields of evaporation products compatible with
the partial absorption of the projectile, also referred to as
incomplete fusion (ICF). However, some recent experi-
mental results [18] suggest that the ICF products are
compatible with a direct, one-step mechanism, thus putting
into question the BF picture.
From the theoretical point of view, the situation is also

unclear. Different models have been proposed to account
for this CF suppression and the related ICF cross sections,
including classical [19,20], semiclassical [21,22], and
quantum-mechanical [23] approaches. Most of them
exploit the two-step, breakup-fusion picture. Although in
most calculations the coupling to the breakup channels was
found to produce a reduction of CF, the predicted sup-
pression is systematically too small.
In a recent work [24], we presented a novel approach

which provides CF and ICF cross sections within a
common framework. Furthermore, the model was able to
account for the observed CF suppression in the 6;7Liþ 209Bi
reactions, for a wide range of incident energies. Despite the
good agreement with the data, the calculations of Ref. [24]
were not able to answer the important question on whether
the ICF proceeds as a two-step process, as assumed by the
BF picture, or it is actually a one-step mechanism. The
reason is that those calculations were done with the DWBA
version of the IAV model. As such, the entrance channel
was described with an effective optical potential reproduc-
ing the corresponding elastic scattering data. Although the
success of the DWBA approximation to explain these and
other inclusive breakup data suggests the dominance of the
one-step mechanism over the BF mechanism, the fact that
the entrance channel optical potential used in DWBA is
commonly adjusted to reproduce the elastic scattering data
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implies that this potential may implicitly include breakup
contributions corresponding to situations in which the
projectile dissociates prior to its total or partial absorption
by the target, which correspond to the first step of the BF
mechanism.
It is the goal of this work to elucidate the nature of the ICF

process and, in particular, to assess the validity of the BF
picture. For that, one needs a model that incorporates
explicitly the intermediate breakup channels of the projectile.
Such a model was in fact put forward by Austern al. [25]
in a three-body version of the IAV theory, in which the
entrance channel wave function was described using an
expansion in projectile eigenstates. This three-body wave
function is identical to that used in the continuum-discretized
coupled-channels (CDCC) method so we will refer to this
extended IAVmodel as IAV-CDCC. This IAV-CDCChas not
been applied in practice due to its numerical complexity.
In this work we present the first implementation of the

IAV-CDCC theory and apply it to several reactions induced
by weakly bound projectiles. In addition to disentangling
the nature of the ICF process, this study will serve to assess
the accuracy of the commonly adopted DWBA approxi-
mation of the IAV model.
Theoretical framework.—We consider a process in

which a two-body projectile a ¼ bþ x collides with a
target nucleus A, emitting the fragment b. Schematically,

að¼ bþ xÞ þ A → bþ B�; ð1Þ

where B� denotes any possible final state of the xþ A
system. This includes the elastic breakup (EBU) process, in
which both b and x scatter elastically from A, and hence the
latter is left in its ground state. The other contributors,
which we call globally nonelastic breakup (NEB), are
those in which x undergoes a nonelastic interaction with
the target, including xþ A inelastic scattering, nucleon
exchange between x and A, and fusion. The latter corre-
sponds to the incomplete fusion process mentioned in the
introduction.
The ICF is usually interpreted as a two-step process

[9,26–30]. For a two-body weakly bound projectile awith a
target A, such a process may symbolically be written as

aþ A → bþ xþ A → bþ B�: ð2Þ

In this picture, the projectile is first excited into its
continuum states and then one of the fragments (x in this
case) is absorbed by the target. However, the same final
state can in principle be reached via the direct, one-step
process in which the x fragment is directly absorbed by the
target nucleus, without the intermediate breakup states, as
implied by recent experimental results [19,20]. This proc-
ess is possible invoking, for example, a trojan horse (TH)
mechanism [24]. These two possible scenarios are depicted
in Fig. 1.

To disentangle the nature of ICF, we make use of the
three-body theory proposed by Austern et al. [25] (the
IAV-CDCC model referred to in the introduction), in which
the NEB cross section for the inclusive process Aða; bXÞ is
given by the closed-form formula

d2σ
dEbdΩb

����
NEB

¼ −
2

ℏva
ρbðEbÞhφxðkbÞjIm½UxA�jφxðkbÞi;

ð3Þ

where ρbðEbÞ is the density of states of the particle b,
va is the velocity of the incoming particle, UxA is the
optical potential describing xþ A elastic scattering, and
φxðkb; rxAÞ is a relativewave function describing themotion
between x and A when particle b is scattered with momen-
tum kb. This function is obtained from the equation

φxðkb; rxÞ ¼
Z

Gxðrx; r0xÞhr0x χð−Þb jVpostjΨ3bðþÞidr0x ð4Þ

whereGx is the Green’s function with optical potentialUxA,

χð−Þ�b ðkb; rbÞ is the distorted wave describing the relative
motion between b and B� compound system (obtained with
some optical potential UbB), Vpost ≡ Vbx þ UbA −UbB is
the postform transition operator and Ψ3bðþÞ the three-body
scattering wave function. Note that the imaginary part of
UxA accounts for all nonelastic processes between x and A
and hence Eq. (3) includes the ICF as well as other NEB
contributions. Further details can be found in Ref. [31] and
in the Supplemental Material, Sec. II [42].
The exact wave function Ψ3bðþÞ appearing in Eq. (4)

could, in principle, be obtained by solving the Faddeev
equations [32]. However, due to its numerical complexity
and to the nontrivial definition of the three-body boundary
condition [33], Austern et al. [25] proposed as an alter-
native approximating this three-body wave function by an
expansion in terms of bþ x states, including continuum
components, i.e.,

FIG. 1. Illustration of the direct (left) and two-step (right) paths
leading to partial capture of the projectile. See text for details.
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Ψ3bðþÞðra; rbxÞ ¼
X

i

ϕi
aðrbxÞ χiðþÞ

a ðraÞ

þ
Z

dkϕaðk; rbxÞ χðþÞ
a ðK; raÞ; ð5Þ

where fϕi
aðrbxÞ;ϕaðk; rbxÞg are the eigenfunctions of the

projectile Hamiltonian for bound and continuum states,
respectively, with i a discrete index for projectile bound
states, and k the asymptotic momentum of bþ x scattering

states. The distorted waves f χiðþÞ
a ðraÞ; χðþÞ

a ðK; raÞg
describe the projectile-target relative motion for each
projectile state. For continuum states, these functions
depend on the momentum K, which is related to the
internal momentum k by energy conservation. To make
Eq. (5) calculable, the integral over continuum states is
approximated by a discrete expansion in a basis of square-
integrable functions, as done in the so-called continuum-
discretized coupled-channels (CDCC) method [25,34],

Ψ3bðþÞ ≃ ΨCDCCðþÞðra; rbxÞ
¼

X

i

ϕi
aðrbxÞ χiðþÞ

a ðraÞ

þ
XN

c

ϕc
aðkc; rbxÞ χcðþÞ

a ðKc; raÞ; ð6Þ

where c ¼ fn; j; mg, with j, m the angular momentum and
projection of the continuum states and n a discrete index
labeling the discretized continuum states. The maximum
angular momentum j and wave number k is determined by
convergence of the studied observables. In the present
calculations, we adopt the standard binning method
[25,34], in which the discretized continuum states are
represented by wave packets built upon superposition of
the bþ x scattering states for predefined energy intervals
(bins). The widths of these bins must be chosen small
enough so as to produce converged elastic and breakup

observables. The radial functions χiðþÞ
a ðraÞ and χcaðKc; raÞ

are obtained by solving a system of coupled-differential
equations [25,34].
Inserting the CDCC wave function (6) into Eq. (4) yields

a full three-body description of NEB cross sections. In
addition, one can isolate the direct, one-step mechanism
contribution by retaining only the ground-state component
of Eq. (6) in Eq. (4). This approximation will be referred to
as IAV-CDCC (g.s.) in the calculations presented below.
We conclude this section by noting that one could in

principle estimate the ICF content of the NEB cross section
by splitting in Eq. (3) the potential UxA into an inner part
and a peripheral one, with the former accounting for the
ICF [35–37]. We prefer, however, to focus the discussion
on the full NEB to avoid the ambiguity inherent to this
separation.

Application to the deuteron and 6Li induced reactions.—
We first consider the breakup reaction 93Nbðd; pXÞ at
Ed ¼ 25.5 MeV. This reaction was already analyzed in
our previous work [31] with the DWBAversion of the IAV
model, finding a good agreement with experimental data.
Here we compare the NEB differential cross sections

using the IAV model, with different choices for the Ψ3bðþÞ
wave function in Eq. (4), namely, the DWBA approxima-
tion (IAV-DWBA), the full CDCC wave function (IAV-
CDCC), and the truncated CDCC wave function, in which
only the g.s. component of Eq. (6) is retained in Eq. (4)
[IAV-CDCC (g.s.)]. We adopt the same potentials used in
our previous calculations. For the CDCC calculations, the
n − p states were included for l ¼ 0–4 partial waves and
up to a maximum excitation energy of 20 MeV. For the
DWBA results, the deuteron-target potential is taken from
Ref. [38] and the potential depth is adjusted to reproduce
the elastic scattering differential cross section computed by
CDCC. This procedure is intended to reduce uncertainties
when comparing the NEB differential cross section calcu-
lated by these methods. To simplify the calculations, we
ignore intrinsic spins.
In Fig. 2(a), we show the calculated angle-integrated

NEB differential cross section, dσ=dEp as a function of the
neutron-target orbital angular momentum corresponding to
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FIG. 2. Nonelastic breakup contribution for the reaction for
93Nbðd; pXÞ at Elab ¼ 25.5 MeV for an outgoing proton c.m.
energy of 14 MeV. (a) Energy differential cross section as a
function of the neutron-target orbital angular. (b) Double differ-
ential cross section angular distribution.
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a proton energy of Ep ¼ 14 MeV in the c.m. frame. The
solid, dashed, and dotted lines correspond, respectively,
to the IAV-DWBA, IAV-CDCC, and IAV-CDCC (g.s.)
calculations. We find that all three calculations give very
similar results. In Fig. 2(b) we show the results for the
double differential cross section angular distributions
(Ep ¼ 14 MeV). The three calculations give essentially
the same angular shape, with only minor differences seen at
the larger angles. These calculations clearly indicate that,
for this reaction, the NEB processes (including ICF) take
place directly from the projectile ground state, contrary to
the BF picture, and that the BF mechanism is marginal.
As a second example, we consider the α production in

reactions induced by the weakly bound nucleus 6Li. These
α yields are experimentally found to be very large,
significantly exceeding the deuteron production channel
(see, e.g., Ref. [39]). This result points toward NEB
mechanisms, as it has been indeed confirmed by our recent
calculations using the IAV model [24,31,40]. Furthermore,
the fact that a significant part of the incident flux feeds the
α-production channel results in a sizable reduction (∼30%)
of the CF cross sections, as found in many experiments and
confirmed by the calculations [24].
For the present study, we have considered the 6Liþ 209Bi

reaction at several energies around the Coulomb barrier
(Vb ¼ 30.1 MeV [13]). Inclusive breakup data for this
reaction have been compared in our previous work [31]
with IAV-DWBA calculations. Here, we adopt the same
potentials employed in those calculations. For simplicity,
we also ignore the particle spins. In the CDCC calculation,
we consider the partial waves l ¼ 0–2 and excitation
energies up to 20 MeV for the α − d continuum. For the
DWBA calculation, the 6Liþ 209Bi potential is taken from
the global parametrization of Cook [41], but we slightly
adjust the potential depth to have a better agreement
with the elastic scattering angular distribution obtained
with CDCC.
The results are shown in Fig. 3(a) for the angle-

integrated NEB differential cross sections’ α energy dis-
tribution in the c.m. frame, with the same meaning for the
lines as in Fig. 2. The results are qualitatively similar to
those found in the deuteron case, namely, the (i) the
IAV-CDCC(gs) calculation, in which only the ground state
wave function of the projectile is retained, is very close to
the full calculation and (ii) the IAV-DWBA approximation
provides a good approximation to the full three-body IAV-
CDCC result. Thus, also in this reaction we find that the
NEB processes proceed directly from the 6Li ground state.
In the case of the ICF channels, this means that the deuteron
is directly captured by the target nucleus, without requiring
the previous dissociation of the 6Li projectile into αþ d.
In Fig. 3(b) we compare the ratio of these calculations for

different 6Li incident energies. The circles are the ratio
between the IAV-CDCC (g.s.) and full IAV-CDCC results
and the squares give the ratio between IAV-DWBA and

IAV-CDCC. The dashed ellipse highlights the results of
Fig. 3(a). It is seen that the omission of the αþ d breakup
channels [as done in the IAV-DWBA and IAV-CDCC (g.s.)]
results in an underestimation of the NEB yield and that this
effect increases with increasing incident energies. This
result can be understood as due to the increasing impor-
tance of the projectile dissociation as the incident energy
increases. At the maximum incident energy explored in our
calculations, the omission of the two-step mechanism
results in a difference of 11% in the evaluated NEB cross
section. We see also in Fig. 3(b) that the IAV-DWBA
calculation is rather close to the full IAV-CDCC calcu-
lation. As the incident energy increases, the difference with
IAV-CDCC is smaller than in the case of IAV-CDCC (g.s.)
(7% at E ¼ 40 MeV), indicating the ability of the DWBA
approximation of implicitly accounting for the projectile
dissociation. Although the results of Figs. 2 and 3 point
toward a very small contribution of the unbound states of
the CDCC expansion (6) on the NEB cross section, this
contribution is shown explicitly in the Supplemental
Material [42] for completeness.
The projectile dissociation [corresponding to the first

step in Eq. (2)] is known to be correlated with the
separation energy of the projectile, becoming more impor-
tant as the binding energy decreases. Thus, it is expected
that the importance of the two-step mechanism will be also
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FIG. 3. (a) NEB differential cross sections as a function of the
d-209Bi relative energy. (b) Ratio of NEB cross section computed
by different methods as a function of the 6Li incident energy. The
ellipse highlights the energy corresponding to panel (a). See text
for more details.
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correlated with the separation energy. To investigate this
connection within the present framework, we have repeated
the NEB calculations varying artificially the separation
energy of 6Li for the 6Liþ 209Bi reaction at 36 MeV. The
results are shown in Fig. 4. The symbols have the same
meaning as in Fig. 3(b). These results show, as expected,
that IAV-CDCC (g.s.) approaches the full IAV-CDCC when
the separation energy increases. For the most weakly bound
case considered in our calculations (Sαd ¼ 1 MeV), the
NEB cross section computed with CDCC (g.s.) under-
estimates by ∼11% the full IAV-CDCC result, confirming
the increasing relevance of the projectile dissociation for
weakly bound nuclei. The IAV-DWBA follows a similar
trend compared to IAV-CDCC (g.s.), although the
differences with IAV-CDCC are smaller except for the
most weakly bound case.
Summary and conclusions.—In summary, we have

presented the first implementation of the IAV model for
the inclusive breakup of two-body projectiles using a full
three-body description of the scattering problem. For that,
we have employed the CDCC model wave function. This
implementation goes beyond the DWBA approximation
employed so far in previous applications of this model.
In the range of energies explored here, however,

differences remain of the order of 10% or less, which
seems to explain the success of the DWBA to account for
experimental data [31,43–45].
We have also explored the importance of the two-step

process in the NEB mechanism, by comparing the full IAV-
CDCC results with those obtained retaining only the
projectile g.s. in the evaluation of the NEB cross section.
We find that, as the separation energy decreases, or the
incident energy increases, the IAV-CDCC (g.s.) tends to
deviate from the full IAV-CDCC results. Yet, the overall
effect is rather small for all explored incident and binding
energies (less than 12%). Instead, our present results
conclusively show that the partial fusion process (i.e.,
ICF) is mainly a one-step process and that the two-step

mechanism, while not completely negligible, represents a
minor contribution. These results put into question the
commonly accepted breakup-fusion picture of the ICF
process.
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