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6Li in a three-body model with realistic Forces: Separable versus nonseparable approach
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Background: Deuteron induced reactions are widely used to probe nuclear structure and astrophysical
information. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques.
Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order
to arrive at sets of coupled integral equations in one variable. However, it needs to be demonstrated that their
solution based on separable interactions agrees exactly with solutions based on nonseparable forces.
Methods: Momentum space Faddeev equations are solved with nonseparable and separable forces as coupled
integral equations.
Results: The ground state of 6Li is calculated via momentum space Faddeev equations using the CD-Bonn
neutron-proton force and a Woods-Saxon type neutron(proton)-4He force. For the latter the Pauli-forbidden
S-wave bound state is projected out. This result is compared to a calculation in which the interactions in
the two-body subsystems are represented by separable interactions derived in the Ernst-Shakin-Thaler (EST)
framework.
Conclusions: We find that calculations based on the separable representation of the interactions and the original
interactions give results that agree to four significant figures for the binding energy, provided that energy
and momentum support points of the EST expansion are chosen independently. The momentum distributions
computed in both approaches also fully agree with each other.
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I. INTRODUCTION

A variety of applications of nuclear physics require the
understanding of neutron capture on unstable nuclei. Due to
the short lifetimes involved, direct measurements are currently
not possible, and thus indirect methods using (d,p) reactions
have been used for both the direct capture [1,2] as well as the
compound [3] components. A recent review on (d,p) reactions
and its connection to neutron capture can be found in [4].
In addition, single neutron transfer (d,p) reactions can be
used to constrain proton capture cross sections, due to mirror
symmetry (e.g., [5]). Beyond these astrophysical motivations,
single-nucleon transfer reactions involving the deuteron have
been the preferred tool to study shell evolution in nuclear
structure, both for nuclei close and far from stability (see
Refs. [6,7] for two recent examples). In all these cases, a
reliable reaction theory for (d,p) is a critical ingredient.

Scattering and reaction processes involving deuterons either
as projectile or as target are perhaps the most natural three-
body problem in the realm of nuclear reactions. The binding
energy of the deuteron is so small that its root-mean-square
radius is significantly larger than the range of the force. That
means that when a deuteron interacts with a compact, well
bound nucleus, one may expect that it will behave like a three-
body system consisting of proton p, a neutron n, and a nucleus
A. The obvious three-body reactions are elastic scattering, re-
arrangement, and breakup processes. In order to describe those
processes on the same footing, deuteron-nucleus scattering
should be treated at least at the three-body level. Note that if
the target itself has low-lying excitations, one may need to go
beyond the pure three-body treatment, see, e.g., [8]. However,

for the application we consider here (namely, 6Li ≡ n + p +
α), one expects the three-body treatment to be sufficient.

The three-body Hamiltonian governing the dynamics of the
(d,p) reactions contains the well-understood nucleon-nucleon
(NN ) interaction as well as an effective interaction between
the nucleons and the target. Commonly these nucleons-nucleus
interactions are parametrized by phenomenological optical po-
tentials which fit a large body of elastic scattering data [9–11].

The application of momentum space Faddeev techniques
to nuclear reactions has been pioneered in Ref. [12], and
successfully applied to (d,p) reactions for light nuclei [13].
However, when extending these calculations to heavier nuclei
[14,15], it becomes apparent that the screening techniques
employed for incorporating the Coulomb interaction in
Faddeev-type reaction calculations with light nuclei cannot
be readily extended to the heaviest nuclei. Therefore, a
new method for treating (d,p) reactions with the exact
inclusion of the Coulomb force as well as target excitation
was formulated in Ref. [16]. This new approach relies on a
separable representation of the pairwise forces.

Separable representations of the forces between con-
stituents forming the subsystems in a Faddeev approach have a
long tradition in few-body physics. In the context of describing
light nuclei like 6Li [17–19] and 6He [20] in a three-body
approach, rank-1 separable interactions of Yukawa-type have
been successfully used. In the case of the three-nucleon
problem, separable representations for the NN force of higher
rank had to be developed in order to improve the agreement
with exact Faddeev calculations [21–24]. Those were based
on the scheme suggested by Ernst-Shakin-Thaler [25] (EST).
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The pioneering work of Hlophe and collaborators [26–28]
demonstrated that an EST-based separable interaction of rank
up to 5 provides a precise description of nucleon-nucleus
elastic scattering for a wide range of energies, including nuclei
as heavy as 208Pb. The development of these separable complex
(and energy dependent) effective potentials opens the path to
apply the method of Ref. [16] to the three-body A(d,p)B
reaction problem.

Since a separable expansion of the nuclear transition
amplitudes can be viewed as a basis expansion, it is critical
to understand the convergence of the numerical results. In
order to benchmark these calculations, one needs to compare
to the solution of the problem without the use of separable
interactions. Such a comparison was successfully carried out
for neutron-deuteron scattering at 10 MeV [29], and at slightly
higher energies in Ref. [30]. Both studies showed that, for a
converged expansion of the force in the two-body subsystems,
observables in the three-body system agree.

For the applications we have in mind, the benchmarks need
to be performed for the A + d case in a regime for which
nonseparable solutions are possible and exact. Furthermore,
our work aims to establish that the approach based on separable
two-body transition matrices is equivalent to the approach
using those transition matrices directly, given the convergence
in the expansion. We choose as benchmark, the ground
state of 6Li because there is a large number of reference
calculations in the literature; our goal is for an agreement
between the separable and the nonseparable approach of up
to four significant figures in the binding energy. The ultimate
goal is to apply the separable approach to nuclear reactions.
Here we expect to lose some precision in solving the Faddeev
equations in the continuum. Note that benchmarks performed
for the four-nucleon bound state ensured four digit accuracy
[31] while the corresponding work for positive energies
provided only a two-digit accuracy [32]. This should also
be sufficient for the problem we are considering, particularly
when computing (d,p) observables.

In this work, our EST-based separable expansion uses
off-shell transition amplitudes at negative energies as basis
states. Those states depend on two parameters, namely the
energy and the off-shell asymptotic momentum, which are
chosen independently. This is in contrast to previous work on
the neutron-deuteron system [21,22], which did not explore
the full parameter space. The effective interactions in the
neutron-alpha and proton-alpha channels are given by a
Woods-Saxon type potential fitted to phase shifts in the S-
and P -wave channels. Since the nα Woods-Saxon potential
supports a bound state in the S-wave two-body channel,
which is Pauli forbidden, we derive a projection scheme for
both approaches which differs from previous works [18,33]
in that it does not add additional Faddeev components,
but rather only modifies the respective two-body transition
amplitudes.

In Sec. II a brief summary of the theory is provided,
including the three-body equations we solve and the new
formulation used to project out the Pauli forbidden S-wave
state in the neutron(proton)-α channel. The inputs to the
problem are presented in Sec. III A, including the interactions
that govern the two-body subsystems, and the results for the 6Li

binding energy and wave function are discussed in Secs. III B
and III C. Our findings are summarized in Sec. IV.

II. FORMAL CONSIDERATIONS

A. Faddeev equations for the ground state of 6Li

The bound state of three particles with masses mi , mj , and
mk and spins ji , jj , and jk which interact via pairwise forces
V i ≡ Vjk (i,j,k = 1,2,3 and cyclic permutations thereof) is
given by the Schrödinger equation, which reads in integral
form

|�〉 = G0(E3)
3∑

i=1

V i |�〉. (1)

Here, the free propagator is given by G0(E) = (E3 − H0)−1,
where H0 stands for the free Hamiltonian and E3 for the
binding energy of the three-body system. Introducing Faddeev
components

|�〉 =
3∑

i=1

|ψi〉 ≡ |ψjk〉 + |ψki〉 + |ψij 〉 (2)

with

|ψi〉 = G0(E3)V i |�〉, (3)

leads to three coupled integral equations for the three compo-
nents |ψi,j,k〉,

|ψi〉 = G0(E3) ti
∑
j �=i

|ψj 〉. (4)

The operator ti = V i + V iG0(E3)ti describes the two-body t
matrix in the subsystem jk. In order to solve Eq. (4) standard
Jacobi momenta are used,

�pk ≡ �pij = μij

( �ki

mi

−
�kj

mj

)
,

(5)

�qk ≡ �qij = μ3b,k

( �kk

mk

−
�ki + �kj

mi + mj

)
.

Here, the two-body reduced mass μij and the three-body
reduced mass μ3b,k are given by

μij = mimj

mi + mj

,

(6)

μ3b,k = mk(mi + mj )

M

with M = mi + mj + mk being the total mass of the system.
Instead of using a three-dimensional Jacobi basis, we

expand into momentum eigenstates which depend on the mag-
nitude of the momenta and angular momentum eigenstates.
The orbital angular momenta of the three particles are coupled
to total angular momentum J and its third component MJ ,

|pkqkαk〉(ij )k = |pkqk((lk(jijj )s)Jij (λkjk)Jk)JMJ 〉(ij )k, (7)

which are normalized as

(ij )k〈p′
kq

′
kα

′
k|pkqkαk〉(ij )k = δ(p′

k − pk)

p′
kpk

δ(q ′
k − qk)

q ′
kqk

δα′
kαk

. (8)

The notation (ij )k indicates that k is the spectator.
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Since we represent each Faddeev component |ψk〉 in its
natural set of Jacobi coordinates |pkqkαk〉(ij )k , a transformation
between the sets (jk)i to (ij )k and (ki)j to (ij )k is required.
The partial wave representation of these transformations can
be calculated as outlined in [34] and can be written as an
integral over the cosine x of the relative angle of pk and qk of
the Faddeev components evaluated at shifted momenta π ′

j =
π ′

j (p′
kqkx) and χ ′

j = χ ′
j (p′

kqkx). All geometrical information
can be parametrized by functions Gα′

kα
′
j
(p′

kqkx). We give more
details on these transformations in Appendix A.

Inserting complete sets of states in Eq. (4) and making use
of the geometrical coefficients Gα′

kα
′
j
(p′

kqkx), we arrive at a set
of three coupled Faddeev equations:

ψ
αk

k (pk,qk) = G0
(
Eqk

; pk

)∑
α′

k

∫
dp′

kp
′2
k t

αkα
′
k

k

(
pk,p

′
k; Eqk

)

×
∫ 1

−1
dx

⎡
⎣∑

α′
i

Gα′
kα

′
i
(p′

kqkx) ψ
α′

i

i (π ′
i ,χ

′
i )

+
∑
α′

j

Gα′
kα

′
j
(p′

kqkx) ψ
α′

j

j (π ′
j ,χ

′
j )

⎤
⎦, (9)

where we introduced the pair kinetic energy Eqk
= E3 − q2

k

2μ3b,k

and the free three-body propagator

G0
(
Eqk

; pk

) = 1

Eqk
− p2

k

2μij

. (10)

The two-body t matrix t
αkα

′
k

k in the Jacobi coordinates (ij )k is
given by the Lippmann-Schwinger equation (LSE),

t
αkα

′
k

k

(
pk,p

′
k; Eqk

) = V k;αkα
′
k (pk,p

′
k) +

∑
α′′

∫
dp′′

kp
′′2
k V k;αkα

′′
k

×(pk,p
′′
k ) G0

(
Eqk

; p′′
k

)
t
α′′

k α′
k

k

(
p′′

k ,p
′
k; Eqk

)
.

(11)

For brevity, we labeled the partial wave channels using three-
body quantum numbers αk . Since the LSE corresponds to a
two-body problem at an off-shell energy Eqk

, the interactions
and t matrices will only dependent on quantum numbers of
the two-body subsystems and will be diagonal in the spectator
quantum numbers.

As is well known (see, e.g., [35]), if the t matrix in the
subsystems is separable,

t
αkα

′
k

k

(
pk,p

′
k; Eqk

) =
∑
mn

hαk
m (pk) τ

αkα
′
k

mn

(
Eqk

)
h

α′
k

n (p′
k), (12)

the coupled integral equations in two variables, Eq. (9), can
be reduced to coupled integral equations in one variable
[see Eq. (A5)]. The indices {m,n} represent the rank of
the separable potential, and k stands for the index of the
Faddeev component. It is possible, with an appropriate choice
of integration variables and the introduction of the modified
geometric functions G̃α′

kα
′
j
(qiqkx) as defined by Eq. (A6), to

obtain a separable form for the Faddeev amplitudes:

ψ
αk

k (pk,qk) ≡ G0
(
Eqk

,pk

) ∑
m

hαk
m (pk) F (k)

mαk
(qk). (13)

Reinserting the above expressing into Eqs. (9) leads to a
coupled set of equations for the amplitudes F (k)

mαk
(qk),

F (k)
mαk

(qk) =
∑
να′

i

∫
dq̃i q̃2

i

⎡
⎣∑

nα′
k

τ
αkα

′
k

mn

(
Eqk

)
Z

(ki)
nα′

k ,να′
i
(qk,q̃i)

⎤
⎦

×F
(i)
να′

i
(q̃i) +

∑
να′

j

∫
dq̃j q̃2

j

×
⎡
⎣∑

nα′
k

τ
αkα

′
k

mn

(
Eqk

)
Z

(kj )
nα′

k ,να′
j
(qk,q̃j )

⎤
⎦F

(j )
να′

j
(q̃j ),

(14)

where all amplitudes are generated by cyclic permutations of
(ijk). The functions Z

(ki)
nα′

k ,να′
k
(qk,q̃i) are the so-called transition

amplitudes [35] coupling the different types of subsystems.
For completeness, the expressions are explicitly given in
Appendix A. We solve both sets of Faddeev equations using
iterative Lanczos-type techniques [36].

B. Treatment of Pauli blocking in the Faddeev equations

Three-body models of nuclei or nuclear reactions require
taking Pauli blocking into account to remove components of
the wave function that would disappear under full antisym-
metrization of the (A + 2)-body problem. Though this topic
has already been extensively treated in the literature (see,
e.g., [18,33,37–39]), we need to pick it up again and develop
a formulation for projecting out a Pauli forbidden state in
momentum space Faddeev equations that works for separable
and nonseparable forces alike.

Let us assume that the Pauli forbidden state is created by
a potential V i in the subsystem i. This two-body bound state
with the wave function |φi〉 is a normalized eigenstate of Hi =
H0 + V i . It can be projected out by introducing the channel
Hamiltonian

H̃ i = H0 + V i + V̂ i = Hi + Ṽ i , (15)

where V̂ i = λ|φi〉〈φi | with λ being a large number. The
Faddeev equations require two-body transition matrices as
input. Thus one needs

t̃i(z) = Ṽ i + Ṽ iG0(z)t̃i(z) (16)

with G0(z) being the free resolvent with z = E + iε. In
this derivation we will drop the subscript i, representing the
arrangement channel, for brevity. The discussion is general for
each pair that contains forbidden states. Using the Gell-Mann-
Goldberger relation [40] in the form

t̃(z) = t(z) + (1 + V G(z)) t̂(z) (1 + G(z)V ), (17)

where G−1(z) = (z − H ), and t̂(z) an operator fulfilling the
LSE,

t̂(z) = V̂ + V̂ G(z)t̂(z) = V̂ + V̂ G̃(z)V̂ . (18)
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Here, G̃−1(z) = (z − H̃ ). Since V̂ is separable and of rank-1,
the analytic solution for t̂ is separable and of rank-1,

t̂(z) = |φ〉 1
1
λ

− 〈φ|G(z)|φ〉 〈φ|. (19)

Using V G(z) = t(z)G0(z) Eq. (17) becomes

t̃(z) = t(z) + |η(z)〉〈η̄(z)|
1
λ

− 1
z−Eb

, (20)

where Eb represents the two-body energy for the bound state
b that needs to be projected out, and

|η(z)〉 = (1 + t(z)G0(z))|φ〉,
(21)

〈η̄(z)| = 〈φ|(1 + G0(z)t(z)).

Equation (20), already presented in Ref. [41], allows to
take the limit λ → ∞ analytically. It remains to express the
states in Eq. (21) in a more convenient fashion. Inserting
the identity 1 = G−1

0 (z)G0(z) and using the representation
G(z) = G0(z) + G0(z)t(z)G0(z) of the full resolvent leads to

|η(z)〉 = (1 + t(z)G0(z))|φ〉
= (z − H0)G(z)|φ〉
= (z − H0)

1

z − Eb

|φ〉. (22)

Similarly, one obtains

〈η̄(z)| = 〈φ|(1 + G0(z)t(z))

= 1

z − Eb

〈φ|(z − H0) . (23)

Thus, the modified transition amplitude, in which the Pauli-
forbidden state is projected to infinity becomes with z ≡ E,

t̃(E) = t(E) − (E − H0)
|φ〉〈φ|
E − Eb

(E − H0). (24)

This modified two-body transition amplitude can easily be
implemented in the Faddeev equations as written in Eq. (9).
Since different channels may have Pauli-forbidden states at
different energies, in general, one has Eb ≡ Eb(i). Although
in this section we have dropped the explicit mention of the
index i, Pauli-forbidden states in different subsystems can be
implemented without any problem.

In case there are several Pauli-forbidden states in a specific
channel of a subsystem, it is straightforward to generalize
Eq. (24) to give

t̃(E) = t(E) − (E − H0)
∑

b

|φb〉〈φb|
E − Eb

(E − H0), (25)

where b runs over the number of Pauli-forbidden states.
Although the expression of Eq. (24) was presented in

Ref. [18], it was not used in this form. Rather the Faddeev equa-
tions were modified to explicitly accommodate the two-body
bound state being projected out. In fact, due to the difference
(E − H0), where E is the energy of the subsystem and thus
depending on the spectator momentum q, the expression of
Eq. (24) is not a priori separable in the coordinates needed in
the Eqs. (14). This makes the task of incorporating the Pauli
projection into the separable expansion somewhat challenging.

To proceed, we first recall the basic properties of the
generalized EST separable representation scheme [42]. The
EST separable potential in any given partial wave has the form

vsep(p′,p) =
∑
lm

hl(p
′) λlm hm(p), (26)

where the form factors are given as the off-shell t matrices

hl(p
′) ≡ t(p′,pl ; El), (27)

corresponding to the original potential V . The strength of
the potential is represented by matrix elements λlm which
depend entirely on the form factors. This implies that the
potential vsep(p′,p) is completely determined by the choice
of form factors. According to Eq. (27), the latter are uniquely
specified by the EST support points {El,pl}, where El is a
fixed energy and pl a fixed momentum. We shall refer to El as
the support energy and pl the support momentum hereafter.
The momentum pl can either be on-shell or off-shell for
positive values of El . For negative support energies, pl is
always off-shell. The number of EST support points give the
rank of the separable expansion as well as the upper bound
for the indices l and m. If the potential used to compute
t(p′,pl ; El) supports a bound state, the latter will be present in
the separable expansion. If this bound state is a Pauli forbidden
state, we choose the potential Ṽ defined in Eq. (15) as the
starting point in the EST construction and the Pauli forbidden
state is projected out. Constructing a separable expansion of
Ṽ implies that the form factors hl = t(p′,pl ; El) in Eq. (26)
are replaced by h̃l(p′) = t̃(p′,pl ; El). Additionally, the matrix
elements λlm must be replaced by λ̃lm, where the latter are
computed using the form factors h̃l(p′). Starting from Eq. (24)
the expression for the modified form factors is given by

h̃l(p
′) = hl(p

′)− (El−Ep′)

(Eb−Ep′ )
hb(p′)

1

El−Eb

hb(pl)

(
El−Epl

)
(
Eb−Epl

) ,
(28)

where hb(p′) ≡ 〈p′|V |φ〉. The momentum subscripts on the
energy variables imply Epl

= 2μp2
l . The explicit derivation

of Eq. (28) is given in Appendix B. Using h̃(p) in the
separable expansion is straightforward and does not increase
the rank. Multiple Pauli forbidden bound states simply produce
additional modifications to the form factors in accordance with
Eq. (25).

III. RESULTS AND DISCUSSION

A. Interactions in the two-body subsystems

For computing the ground state of 6Li in a three-body
model, we need the interactions in the different subsystems,
np, nα, and pα. For the np subsystem, we employ the
CD-Bonn potential [43] and include only the deuteron channel
(3S1-3D1). This potential is one of the so-called ‘high-precision’
potentials that fit the two-nucleon observables up to 300 MeV
with χ2 ≈ 1. The proton and neutron masses given in Ref. [43]
are mp = 938.2723 MeV and mn = 939.5656 MeV. For the
nα (pα) subsystem, we ignore the microscopic structure of the
alpha-particle and employ a phenomenological interaction that
is fitted to the low-energy nucleon-alpha phase shifts. Here we
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FIG. 1. The S- and P-wave phase shifts in the nα and pα subsystems as function of the neutron/proton laboratory kinetic energy. The solid
(dashed) lines represent the calculations with the modified Bang interaction [39] for the nα and pα systems. The phase-shifts extracted from
an R-matrix fit [45] are shown for nα by filled circles and for pα by filled diamonds.

include the S1/2, P1/2, and P3/2 partial waves. Our choice is the
interaction given by Bang [44], which is of Woods-Saxon type,
and supports a Pauli-forbidden S-wave bound state. For this
work, we slightly modify the Bang potential by changing the
central potential depth from −43 MeV to −44 MeV, to improve
the description of the nα and pα phase shifts, particularly of
the P waves below Elab = 10 MeV. As mass of the α particle
we use mα = 3727.379 MeV. The S- and P -wave phase-shifts
for n + α and p + α scattering calculated with this potential
are shown in Fig. 1. They are compared to the phase shifts [45]
extracted from an R-matrix fit to data.

To describe the pα interaction, we add to the nα potential a
Coulomb force that consists of a short-range part, correspond-
ing to a charged sphere of radius Rc = 1.25 × 41/3 fm and the
standard long-range point Coulomb force [33],

Vc(r) =
{

Z1Z2e
2

2Rc

[
3 − ( r

Rc

)2]
r < Rc

Z1Z2e
2

r
r > Rc,

(29)

where Z1Z2 = 2 and e2 = 1.43997 MeV fm.

B. Binding energy of 6Li: Separable vs nonseparable

In this section, we consider two approaches to solve the
momentum-space Faddeev equations for the ground state of
6Li using the two-body interactions described in Sec. III A as
input. The first approach consists of solving the bound state
Faddeev equations directly as given by Eqs. (9) leading to
an ‘exact’ solution of the three-body bound state problem.

The numerical results are obtained using Gauss-Legendre
quadratures. The momentum grids for converged results
consist of Np = 200 points for the pair momentum p and Nq =
200 for the spectator momentum q. The maximum values
for the above-mentioned momenta are set to p = 60 fm−1

and q = 60 fm−1, respectively. This calculation yields E3 =
−3.787 MeV for the three-body binding energy of 6Li when no
Coulomb interaction is included and E3 = −2.777 MeV with
the Coulomb interaction of Eq. (29). The Coulomb potential is
treated by introducing a cutoff radius Rcut beyond which Vc(r)
is set to zero. The momentum space representation is evaluated
using either an analytic or numerical Fourier transform. Both
methods are numerically stable. To further test the numerical
stability of the calculation, the binding energy was computed
using different values of the cutoff radius. We found that the
result for E3 is independent of the cutoff radius for Rcut >

15 fm. The experimental value is E
exp
3 = −3.699 MeV from

Ref. [46]. Our three-body calculation slightly underbinds 6Li,
a standard feature of these three-body models. The difference
is typically accounted through a three-body interaction [47].

The second approach for solving the Faddeev equations
consists of two steps. First, the EST [42] scheme is employed to
construct separable representations of the two-body potentials
given in Sec. III A. Then, the separable interactions are used
to solve Eqs. (14) in order to obtain the three-body binding
energy as well as the Faddeev amplitude according to Eq. (13).
In the current example, the separable expansion is used to
make a prediction for the 6Li three-body binding energy with
a precision of four significant figures. To check the accuracy of
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this prediction, the results are compared to the ones obtained
directly without the separable expansion.

According to Eq. (27), the EST separable expansion
employs solutions of the LSE as basis states. These states
depend on two parameters, the two-body energy El as well as
the asymptotic momentum pl . We refer to each combination
of El and pl as an EST support point. It should be pointed
out that if one employs the constraint El = 2μp2

l with μ
being the reduced mass of the two-body system, the basis
states depend only on one parameter. While the EST scheme
[22,29,30] has been applied in solving Faddeev equations in
separable form, those works did not take advantage of the full
parameter space by imposing pl = √

2μ|El|. We make use
of the full parameter space for the basis states and choose pl

and El independently as suggested in Ref. [42]. The bound
state Faddeev equations require off-shell two-body t matrices
as input in the energy range −∞ � E2b � E3. Therefore, a
good separable representation of the off-shell properties of
the t matrices is required to reproduce the direct calculation
accurately.

A successful application of the EST scheme hinges on
an effective selection of the support energies and momenta.
Since we are interested in a separable expansion for two-body
energies E2b between −∞ and E3, we restrict ourselves
to negative energy support points. The off-shell t matrix
has a smooth energy dependence and is dominated by the
energy-independent Born term at large values of |E2b|. It is thus
not necessary to incorporate support points at large negative
energies. In practice, it is sufficient to consider support energies
in the range −100 MeV � El � 0.

The use of separable expansions for the two-body poten-
tials introduces uncertainty in three-body observables. This
uncertainty must be quantified in order to make meaningful
predictions. The dependence of E3 on the choice of support
points reflects the uncertainty in our procedure. By varying the
latter while keeping the rank fixed can lead to a quantitative
estimate of this uncertainty. Carrying out this procedure for
successively increasing ranks provides means for making pre-
cise predictions of three-body observables using this approach.

Contrary to the smooth energy dependence of the off-
shell t matrix, its dependence on the off-shell momenta
is much more intricate and is determined by the shape of
the underlying potential. As a consequence, the predicted
three-body observables show more sensitivity to the choice
of the support momenta. To make an economic choice for the
latter, we first identify the relevant range of the t matrix in
momentum space and define the support momenta within it.

To illustrate how the support momenta are chosen, the
off-shell t matrix corresponding to the CD-Bonn potential is
computed for the 3S1-3D1 partial wave. Figure 2 shows the off-
shell t matrix elements tlnp ′lnp (p′,p; E2b) for the np system as
a function of the off-shell momentum p. The matrix elements
t00(p′,p; E2b) are depicted in panel (a) while t22(p′,p; E) and
t20(p′,p; E) are shown in panels (b) and (c). The center-of-
mass energy (c.m.) is fixed at E2b = −50 MeV. Results ob-
tained using the CD-Bonn potential are indicated by solid lines
for p′ = 0.3 fm−1 and dashed lines for p′ = 0.8 fm−1. Corre-
sponding t matrix elements calculated using a rank-6 separable
representation of the CD-Bonn potential are illustrated by
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FIG. 2. The off-shell t matrix elements tl′nplnp (p′,p; E) for the np

system as function of the off-shell momentum p. The center of mass
energy is E2b = −50 MeV while the total angular momentum and
spin are fixed at Jnp = Snp = 1. The t matrix elements t00(p′,p; E)
are shown in panel (a) while the ones corresponding to lp = l′p = 2
are illustrated in panel (b). Panel (c) shows the matrix elements
t20(p′,p; E). The solid and dashed lines depict the t matrix elements
computed with the CD-Bonn potential for p′= 0.3 fm−1 and
p′= 0.8 fm−1 respectively. The results obtained using a rank-6
separable representation of the CD-Bonn potential are indicated
by upward triangles for p′= 0.3 fm−1 and by diamonds for p′=
0.8 fm−1. The six EST support points are located at {El,pl} =
{−60,0.4},{−60,1.1},{−60,2.5},{−5,0.4},{−5,1.1},{−5,2.5}. The
energies have units of MeV while the momenta are given in fm−1.

triangles for p′ = 0.3 fm−1 and diamonds for p′ = 0.8 fm−1.
The energies are in units of MeV while the momenta are
given in fm−1. The support points are {El,pl} = {−60,0.4},
{−60,1.1},{−60,2.5},{−5,0.4},{−5,1.1},{−5,2.5}. As men-
tioned above, the support energies are selected within the
range −100 MeV � El � 0. Their specific values can be
altered without compromising the accuracy of the separable
representation. However, the support momenta are chosen to
reproduce the structure of the t matrix below 5 fm−1. As a
first guess, the momenta are chosen such that there is one
in the vicinity of each minimum or maximum. Improvement
of the separable expansion is attained by further adjustment
of the initial values.

The choice of momenta is not unique since a slight change
in the given values can still capture the structure of the off-shell
t matrix. However, changing the value of each support momen-
tum by, e.g., 0.5 fm−1, can already lead to a poor representation
of the t matrix, as well as the three-body observables. It is
thus imperative to check that each chosen set of momenta
captures the shape of the off-shell t matrix in order to ensure
that the separable expansion converges rapidly. It should be
noted that, although the structure of the t matrix differs for
each E and p′, the regions of intricate momentum dependence
remain mostly unaltered. For example, this can be seen by
comparing the t matrix at p′ = 0.3 fm−1 and p′ = 0.8 fm−1.
Although the shape is quite different in each case, the features
that determine the location of the support momenta are situated

064003-6



6Li IN A THREE-BODY MODEL WITH REALISTIC . . . PHYSICAL REVIEW C 96, 064003 (2017)

TABLE I. Separable representations of the CD-Bonn potential [43] in the energy range −∞ < E2b � −2 MeV. The labels and ranks of
the separable potentials are listed in the first and second columns. The corresponding support energies and momenta are given in the third and
fourth columns.

label rank support energy El [MeV] support momenta kl [fm−1]

EST3-1 3 −35,−15,−5 0.92, 0.60, 0.35
EST3-2 3 −5,−5,−5, 0.8, 1.1, 2.5
EST3-3 3 −25,−5,−5 0.8, 0.8, 1.1
EST3-4 3 −65,−10,−10 0.8, 0.8, 2.5

EST4-1 4 −20,−3,−3,−3 0.7, 0.4, 1.1, 2.5
EST4-2 4 −40,−3,−3,−3 0.7, 0.4, 1.1, 2.5
EST4-3 4 −40,−5,−5,−5 0.7 ,0.4, 1.1, 2.5
EST4-4 4 −60,−7,−7,−7 0.7, 0.4, 1.1, 2.5

EST5-1 5 −30,−20,−3,−3,−3 0.4, 0.4, 0.4, 1.5, 2.5
EST5-2 5 −60,−60,−3,−3,−3 0.5, 0.5,0.4, 1.5, 2.5
EST5-3 5 −40,−30,−5,−5,−5 0.3, 0.3,0.4, 1.5, 2.5
EST5-4 5 −60,−40,−5,−5,−5 0.3, 0.3,0.4, 1.5, 2.5

EST6-1 6 −20,−20,−20,−3,−3, − 3 0.4, 1.1, 2.5, 0.4, 1.1, 2.5
EST6-2 6 −30,−30,−30,−3,−3, − 3 0.4, 1.1, 2.5, 0.4, 1.1, 2.5
EST6-3 6 −40,−40,−40,−5,−5, − 5 0.4, 1.1, 2.5, 0.4, 1.1, 2.5
EST6-4 6 −60,−60,−60,−5,−5, − 5 0.4, 1.1, 3.5, 0.4, 1.1, 2.5

EST7-1 7 −20,−20,−20,−3,−3,−3, − 3 0.4, 1.1, 3.0, 0.4, 1.1, 3.0, 15.0
EST7-2 7 −30,−30,−30,−3,−3,−3, − 3 0.4, 1.1, 3.0, 0.4, 1.1, 2.5, 15.0
EST7-3 7 −40,−40,−40,−40,−5,−5, − 5 0.4, 1.1, 3.0, 15.0, 0.4, 1.1, 3.0
EST7-4 7 −60,−60,−60,−60,−5,−5, − 5 0.4, 1.1, 3.0, 15.0, 0.4, 1.1, 3.0

EST8-1 8 −60,−60,−60,−60,−5,−5,−5, − 5 0.4, 1.1, 3.0, 15.0, 0.4, 1.1, 3.0, 15.0

at similar positions. Consequently, the support points adjusted
to reproduce the off-shell t matrix at p′ = 0.3 fm−1 are equally
well suited for p′ = 0.8 fm−1. Thus, by accurately representing
the off-shell t matrix at a single energy by including several
support momenta, one can obtain an accurate representation
of the off-shell t matrix at other energies. Although such a
choice is specific to the CD-Bonn potential, these support
points would be applicable to any NN t matrix that exhibits
either (1) a similar off-shell structure or (2) a considerably
less complicated dependence on the off-shell momenta. The
structure of the NN t matrix corresponding to most high
precision and chiral potentials is similar in the low momentum
region that determines the support momenta. We thus expect
that the support points determined for the CD-Bonn potential
will provide an equally good representation for all such NN
potentials. For example, we verified that those same support
points yield excellent results for the high precision Nijmegen I
[48] and AV18 [49] as well as the chiral potential of Ref. [50].
Contrarily, the structure of the off-shell t matrix corresponding
to the Woods-Saxon Bang potential is very different from that
of the NN t matrices, and thus an independent determination
of the support momenta must be carried out.

To quantify the uncertainty on the three-body binding
energy, separable representations of successively increasing
rank are constructed for both, the CD-Bonn and the Bang
potential. Table I shows several separable representations
of the CD-Bonn potential. The first and second columns
give the label and rank of the separable potential. The EST
support energies and momenta are listed in the third and
fourth columns, respectively. The same information is given in
Table II for the Bang potential. To proceed, we first fix the EST

support points for the Bang interaction while varying those
of the CD-Bonn potential. Table III shows the three-body
binding energies for the ground state of 6Li calculated using
a variety of np separable representations taken from Table I.
For this study we do not include the Coulomb interaction.
The EST8-4 separable representation of the Bang interaction
defined in Table II is adopted in the nα and pα subsystems.
To ease comparison, we include in the last rows of Tables III
and IV the exact results obtained when solving Eq. (9)
directly.

We observe that the numerical value for the binding energy
fluctuates as the support points are varied. However, the
fluctuations decrease as the rank of the separable potentials
is increased. From Table III we see that the uncertainty in the
binding energy is δE3 ≈ 50 keV for the rank 3 representation.
Increasing the rank to five reduces the uncertainty down to
δE3 ≈ 5 keV. A further increase of the rank to six reduces the
uncertainty to δE3 ≈ 0.5 keV, which corresponds to a preci-
sion of four significant figures. In addition to the uncertainty
associated with the selection of the support energies, one must
take into account the convergence of the binding energy with
respect to the rank of the separable potential. From Table III
we see that increasing the rank from six to seven leaves the
fourth digit of the binding energy unaltered. This observation,
together with the fact that δE3 < 0.5 keV, guarantees that the
numerical result for E3 is precise to four significant figures.

Next, the support points for the CD-Bonn potential are
fixed and those corresponding to the Bang potential are varied.
Table IV is the same as Table III but shows results for different
separable expansions of the Bang interaction. The EST8-1
separable representation of the CD-Bonn potential taken from
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TABLE II. Separable representations of the Bang potential [44] in the energy range −∞ < E2b � −2 MeV. The labels and ranks of the
separable potentials are listed in the first and second columns. The corresponding support energies and momenta are given in the third and
fourth columns.

label rank support energy El [MeV] support momenta kl [fm−1]

EST3-1 3 −20,−1,−1 0.5 0.8, 1.2
EST3-2 3 −30,−2,−2, 0.5, 0.8, 1.2
EST3-3 3 −15,−3,−3 0.4, 0.4, 2.0
EST3-4 3 −5,−5,−5 0.5, 1.2, 2.0

EST4-1 4 −20,−5,−5,−5 0.3, 0.8, 1.2, 2.0
EST4-2 4 −30,−8,−8,−8 0.4, 0.8, 1.2, 2.0
EST4-3 4 −40,−12,−12,−12 0.4, 0.8, 1.2, 2.0
EST4-4 4 −40,−15,−15,−15 0.4, 0.8, 1.2, 2.0

EST5-1 5 −40,−20,−5,−5,−5 0.3, 0.5, 0.8, 1.2, 2.0
EST5-2 5 −60,−30,−10,−10,−10 0.3, 0.5, 0.8, 1.2, 2.0
EST5-3 5 −40,−40,−3,−3,−3 0.4, 1.0, 0.8, 1.2, 2.0
EST5-4 5 −60,−40,−20,−20,−20 0.4, 0.4, 0.8, 1.2, 2.0

EST6-1 6 −20,−20,−20,−5,−5, − 5 0.8, 1.1, 2.0, 0.8, 1.2, 2.0
EST6-2 6 −20,−20,−20,−8,−8, − 8 0.8, 1.1, 2.0, 0.4, 1.1, 2.0
EST6-3 6 −30,−30,−30,−10,−10, − 10 0.8, 1.1, 3.0, 0.4, 1.1, 2.0
EST6-4 6 −40,−40,−40,−15,−15, − 15 0.8, 1.1, 3.0, 0.4, 1.1, 2.0

EST7-1 7 −30,−30,−30,−30,−5,−5, − 5 0.8, 1.1, 2.0, 3.2, 0.4, 1.1, 2.0
EST7-2 7 −40,−40,−40,−40,−5,−5, − 5 0.8, 1.1, 2.0, 3.2, 0.4, 1.1, 2.0
EST7-3 7 −50,−50,−50,−50,−10,−10, − 10 0.8, 1.1, 2.0, 3.2, 0.4, 1.1, 2.2
EST7-4 7 −60,−60,−60,−60,−10,−10, − 10 0.8, 1.1, 2.0, 3.2, 0.4, 1.1, 3.2

EST8-1 8 −20,−20,−20,−20,−5,−5, − 5,−5 0.8, 1.1, 2.0, 3.2, 0.4, 1.1, 2.0, 3.2
EST8-2 8 −30,−30,−30,−30,−8,−8, − 8,−8 0.8, 1.1, 2.0, 3.2, 0.4, 1.1, 2.0, 3.2
EST8-3 8 −50,−50,−50,−50,−10,−10, − 10,−10 0.8, 1.1, 2.0, 3.2, 0.4, 1.1, 2.0, 3.2
EST8-4 8 −60,−60,−60,−60,−10,−10, − 10,−10 0.8, 1.1, 2.0, 3.2, 0.4, 1.1, 2.0, 3.2

Table I is adopted for the np subsystem. Here we observe that
rank-3 and rank-4 potentials lead to the uncertainties δE3b ≈
40 keV and δE3b ≈ 13 keV. Moreover, a rank-7 representation
is needed in order to obtain an uncertainty of approximately
0.5 keV. To ensure that the binding energy is converged to at
least four significant figures, it is necessary to increase the rank
to 8. The predicted value for the three-body binding energy can
thus be read off from Tables III and IV as E3b = −3.787 MeV,
in perfect agreement with the exact result.

The rapid reduction of the uncertainty observed in Tables III
and IV is primarily due to the efficient choice of the support
momenta. To illustrate this point, we consider calculations in
which the constraint pl = √

2μ|El| is imposed. We choose
three sets of support support energies for the CD-Bonn
potential, namely, El = {−150,−120,−80,−60,−45,−35,
−15,−5} MeV, {−180,−140,−100,−70,−55,−35,−10,−3}
MeV, and {−200,−160,−120,−80,−40,−25,−10,−4} MeV.
These sets yield E3b = −3.803 MeV, E3b = −3.788 MeV, and
E3b = −3.795 MeV, respectively. Here we see that despite
being rank-8, these representations lead to fluctuations in the
third digit. This demonstrates that, in order to obtain a result
that is precise to four significant figures, it is essential that the
full parameter space for choosing a basis is considered and the
support momenta are chosen independently from the support
energies.

Finally we calculate the three-body binding energy of
6Li when the Coulomb interaction of Eq. (29) is included
in the description of the pα subsystem. The Coulomb

interaction leads to a different structure of the pα potential,
and the above analysis has to be repeated, leading to a
different set of support points. The rank required to obtain
a precision of at least four significant figures remains un-
changed at eight. Using a rank-8 separable representations
for the Coulomb and Bang potentials yields a three-body
binding energy of −2.777 MeV which agrees completely
with the exact calculation. The support points were chosen to
be {El, pl} = {−55,0.2}, {−55,1.0}, {−55,1.2}, {−55,3.0},
{−3,0.2}, {−3,1.0}, {−3,1.2}, {−3,3.0}.

Lastly, we want to comment that it is mandatory to perform
the projection procedure for the Pauli-forbidden state in the
separable representation as in the exact calculation.

C. Properties of 6Li

After discussing the convergence and accuracy of the three
body binding energy of 6Li, we need to consider properties
of the wave function obtained in both schemes, since we do
not only want to have excellent agreement in the three-body
binding energy but also in observables derived from the wave
function. To this aim, we consider the momentum distributions
with respect to the Jacobi coordinates of the wave function
�( �p,�q). Choosing a specific set of Jacobi variables, e.g., the
set (ij )k, in which k is the spectator with respect to the pair
(ij ), the momentum distribution of the spectator is given as

n(qk) =
∑
αk

∫
dpkp

2
k

∣∣�αk
(pk,qk)

∣∣2, (30)
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TABLE III. Three-body binding energies for the ground state
of 6Li calculated using the separable representations of the CD-
Bonn potential listed in Table I. The labels and ranks of the
separable potentials are shown in the first and second columns. The
corresponding three-body binding energies are listed in the third
column. The EST8-4 separable representation of the Bang potential
defined in Table II is adopted for the nα subsystem. Calculations
shown in this table do not include the Coulomb potential.

label rank E3b [MeV]

EST3-1 3 −3.7967
EST3-2 3 −3.7519
EST3-3 3 −3.7507
EST3-4 3 −3.7480

EST4-1 4 −3.7774
EST4-2 4 −3.7737
EST4-3 4 −3.7712
EST4-4 4 −3.7823

EST5-1 5 −3.7847
EST5-2 5 −3.7848
EST5-3 5 −3.7855
EST5-4 5 −3.7845

EST6-1 6 −3.7867
EST6-2 6 −3.7868
EST6-3 6 −3.7871
EST6-4 6 −3.7870

EST7-1 7 −3.7867
EST7-2 7 −3.7867
EST7-3 7 −3.7867
EST7-4 7 −3.7867

EXACT −3.787

and the momentum distribution of the pair is given as

n(pk) =
∑
αk

∫
dqkq

2
k

∣∣�αk
(pk,qk)

∣∣2. (31)

The momentum distribution of the different pairs in the
ground state of 6Li are shown in panels (a) and (b) of Fig. 3 on
a linear as well as a logarithmic scale, where the corresponding
pair is indicated in the round brackets of the legend. The solid,
dashed, as well as dotted lines are calculated using the non-
separable forces, whereas the crosses, downward, and upward
triangles correspond to the same calculation using separable
forces. The calculations are in excellent agreement. For small
momenta, the distribution in the (np) pair is about twice as
large as the ones in the (nα) and (pα) pairs, whereas for
momenta larger than 2 fm−1 there is an order of magnitude (or
more) difference between the momentum distribution in the
(np) pair and the (nα) and (pα) pairs, an indication of the high
momentum components of the CD-Bonn potential.

Panels (c) and (d) of Fig. 3 depict the momentum distri-
butions of the spectator particle with respect the pair given
in brackets in the legend. For very small momenta q, the
distribution of the α momentum with respect to the (np) pair
dominates by an order of magnitude over the ones of the two
other spectator momenta. However, the logarithmic scale in
panel (d) shows that for different values of q, these roles

TABLE IV. Three-body binding energies for the ground state
of 6Li calculated using the separable representations of the Bang
potential listed in Table II. The labels and ranks of the separable
potentials are shown in the first and second columns. The correspond-
ing three-body binding energies are listed in the third column. The
EST8-1 separable representation of the CD-Bonn potential defined in
Table I is adopted for the np subsystem. Calculations shown in this
table do not include the Coulomb potential.

label rank E3b [MeV]

EST3-1 3 −3.7527
EST3-2 3 −3.7524
EST3-3 3 −3.7151
EST3-4 3 −3.7127

EST4-1 4 −3.7788
EST4-2 4 −3.7777
EST4-3 4 −3.7773
EST4-4 4 −3.7778

EST5-1 5 −3.7798
EST5-2 5 −3.7797
EST5-3 5 −3.7807
EST5-4 5 −3.7806

EST6-1 6 −3.7856
EST6-2 6 −3.7852
EST6-3 6 −3.7852
EST6-4 6 −3.7856

EST7-1 7 −3.7868
EST7-2 7 −3.7864
EST7-3 7 −3.7867
EST7-4 7 −3.7865

EST8-1 8 −3.7870
EST8-2 8 −3.7870
EST8-3 8 −3.7866
EST8-4 8 −3.7868

EXACT −3.787

interchange twice. Finally, for q � 3.5 fm−1 the distributions
in which either the proton or the neutron are the spectators
dominate, which, again is a reflection of the high momentum
components of the CD-Bonn potential.

As discussed in Sec. III A, the effective interaction between
the neutron (proton) and the alpha particle is represented by
Woods-Saxon type potentials. Thus, in both subsystems there
is a bound state in the S1/2 state, for the nα subsystem this
bound state is at −10.326 MeV and for the pα subsystem at
−8.879 MeV. Those bound states are forbidden by the Pauli
principle, and need to be projected out using the formulation
outlined in Sec. II B. In both subsystems we introduce an
additional term to the potential according to Eq. (15), V̂ i =
λi |φi〉〈φi |, and let the parameters λi go to infinity.

In order to better understand the action of the parameters
λnα = λpα ≡ λ, we choose a set of finite values for λ and cal-
culate the ground state three-body binding energy and expecta-
tion value as function of λ. The results of these calculations are
listed in Table V. To simplify this study, the Coulomb potential
is here omitted, leading to Vnα = Vpα . The expectation value
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FIG. 3. Panels (a) and (b) show the momentum distributions n(p) in the (np)-α (solid line), (nα)-p (dotted line), and (pα)-n (dashed line)
arrangement channels of the 6Li ground state calculated with the CD-Bonn [43] np interaction and the modified Bang [44] nα interaction. For
the pα interaction the Coulomb interaction given in Eq. (29) is added. Panels (c) and (d) show the momentum distributions n(q) for the same
arrangement channels as panels (a) and (b). The crosses as well as the upward and downward triangles correspond to the same calculations but
using separable forces.

of the total Hamiltonian is in this case given by

〈E3(λ)〉 ≡ 〈�(λ)|H3b|�(λ)〉
= 〈�(λ)|H0 + Vnp + 2Vnα|�(λ)〉, (32)

TABLE V. The binding energy of the ground state of 6Li
computed with different values of the parameter λ in the projection
operator. For this calculation the Coulomb interaction in the pα

subsystem is omitted. The quantity 〈E(λ)〉 represents the expectation
value of Hamiltonian computed according to Eq. (32) with the cor-
responding projection. The probability PT DB (λ) defined in Eq. (33)
for finding the Pauli forbidden S1/2 state in the 6Li ground state wave
function is given in the last column.

λ [fm−1] E(λ) [MeV] 〈E(λ)〉 [MeV] PT DB (λ) [%]

0 −35.65 −35.65 89.21
0.01 −32.15 −35.62 88.08
0.1 −4.798 −16.84 30.52
1 −3.842 −3.886 1.133 × 10−2

10 −3.794 −3.801 1.654 × 10−4

100 −3.788 −3.789 1.765 × 10−6

1000 −3.787 −3.788 1.843 × 10−8

10000 −3.787 −3.787 2.450 × 10−10

100000 −3.787 −3.787 2.328 × 10−11

∞ −3.787 −3.787 1.259 × 10−10

where H3b is the three-body Hamiltonian. The values of
E3(λ) obtained from the solution of the Faddeev equation,
Eq. (9), start to agree with the expectation value calculated
using Eq. (32) within four significant figures once λ exceeds
1000 fm−1. Letting λ → ∞ gives perfect agreement. In
order to illustrate that the Pauli forbidden S1/2 state |φnα〉 is
completely projected out for λ → ∞, we define a probability

PT DB(λ)=
∑
α′

k

∫ ∞

0
q2

k

∣∣∣∣
∫ ∞

0
dp′

k p′
k

2
φα′

k
(p′

k)�α′
k
(p′

k,qk; λ)

∣∣∣∣
2

dqk,

(33)

which gives the overlap between the Pauli forbidden S1/2

state and the 6Li ground state wave function calculated for a
specific λ. A detailed discussion of this probability is provided
in Appendix C. Obviously, this quantity is calculated in the
Jacobi coordinates where nα constitutes the subsystem. The
calculated values of PT DB(λ) are listed in the last column of
Table V and clearly indicate that for λ � 104 fm−1 the overlap
is numerically zero.

Studying the evolution of the three-body binding energy as
function of the parameter λ shows how the deep three-body
bound state including the Pauli forbidden states in the nα and
pα subsystems moves to the physical three-body bound state.
However, the binding energy does not give further information
about the characteristics of the bound state. Since the Pauli
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FIG. 4. The probability Nβ (λ) for the 6Li three-body ground state
as a function of the projector strength λ calculated according Eq. (34).
The solid, dashed, and dot-dashed lines represent the S1/2, P1/2 and
P3/2 partial wave states of the nα subsystem. The dashed vertical line
indicates the value of λ at which the S1/2 state becomes unbound.

forbidden states in the nα and pα subsystems occur in the
S1/2 partial wave, the unphysical deep bound state should be
dominated by this partial wave. However, we know that the
physical ground state is dominated by P3/2 components. It
is thus illustrative to investigate how the components of the
ground state wave function change as a function of the param-
eter λ. To proceed, we note that the probability for each partial
wave state |αk〉 in the three body wave function is given by

〈
�αk

(λ)
∣∣�αk

(λ)
〉 = ∫ ∞

0
dpk dqk p2

kq
2
k

∣∣�αk
(pk,qk; λ)

∣∣2.
(34)

Here, the index k represents the Jacobi coordinate (nα)p in
which the proton is the spectator with momentum qk . We
recall that the three-body angular momentum states |αk〉 are
constructed by coupling angular momentum states of the pair
|βk〉 to those of the spectator |γk〉, so that |αk〉 = |βk〉 ⊗ |γk〉.
In the present case |βk〉 corresponds to the S1/2, P1/2, and P3/2

partial wave states of the nα subsystem. To determine the
probability for each of those two-body states, one must sum
over the angular momenta of the spectator γk . The probability
for a state |βk〉 is thus given by

Nβ(λ) =
∑

γ

∫ ∞

0
dp dq p2q2 |�α(p,q; λ)|2, (35)

where α = {β,γ } and the subscript k is omitted for concision.
Figure 4 shows the values of Nβ(λ) as a function of λ for
the 6Li three-body ground state. The solid, dashed, and
dot-dashed lines represent the S1/2, P3/2, and P1/2 partial
wave states of the nα subsystem. The vertical line indicates
the value of λ for which the nα system becomes unbound. As
expected, for λ = 0 the ground state is completely dominated
by the S1/2 state. This remains true for values of λ smaller
than 0.05 fm−1. It is worthwhile to note that, even when the
nα subsystem becomes unbound, the three-body ground state
of 6Li is still dominated by the S1/2 component. Only when

λ approaches 0.1 fm−1, the probability of the S1/2 component
rapidly decreases. The corresponding probability of the P3/2

rapidly increases to its final value of about 70%. Moreover,
the ground state acquires a P1/2 probability of about 20% and
maintains an S1/2 probability of about 10% which is due to
the continuum states of nα, pα, and np subsystems.

IV. SUMMARY AND OUTLOOK

In this work, we explore solving momentum-space Faddeev
equations using separable interactions based on the EST
scheme [26–28], for bound three-body systems of the type n +
p + A. Our goal is to benchmark this separable method against
the standard approach of directly solving momentum-space
Faddeev equations. We apply both approaches to 6Li, taking
the CD-Bonn [43] interaction for the np pair and the Bang
[44] potential for the n(p)-α subsystems. Our results for the 6Li
bound state demonstrate that using a separable implementation
of the Faddeev equations is equivalent to solving them directly:
the binding energies obtained with the separable interactions
agree within four digits with the exact calculation, and the
momentum distributions are also in perfect agreement. Our
values of the binding energy obtained for 6Li with CD-Bonn
and Bang are consistent with previous three-body calculations.
Since we are dealing with a bound state problem, including
the Coulomb interaction in the momentum-space Faddeev
equations does not present a problem in both approaches.

As a consequence of our study, there are a few important
developments worth highlighting. First and foremost, we
extended the EST construction of the separable interaction to
include off-shell properties of the t matrix by allowing energy
and momentum support points to be chosen independently.
This proved to be critical for the high quality description
of the properties of the three-body system and to achieve
the desired four-digit precision. Second, the energy and
momentum support points developed for the np subsystem
are independent of the choice of the NN interaction as long as
it describes the low energy behavior of the deuteron channel
with high precision. The numerical implementation valid for
the CD-Bonn interaction will transport immediately to other
high precision NN potentials as well as chiral NN potentials.
However, when solving the n + p + A problem for bound
systems where A > 4, and given the wide range of nucleon-
nucleus effective interactions available, we expect one will
need to inspect the properties of the two-body nucleon-nucleus
t matrices carefully and revisit the issue of optimum energy
and momentum support points in those cases again. Similar
to [26–28], we find here that the structure of the two-body t
matrices as a function of energy and momentum determines
the minimal rank needed for an accurate description of both
the two-body and three-body observables.

Another important development resulting from this study
concerns the method used to project two-body Pauli-forbidden
states out of the model space. We have developed an approach
that does not modify the Faddeev equations and thus can be
implemented straightforwardly in momentum-space Faddeev
equations either in their nonseparable or EST-type separable
representation. This approach is effective in projecting out
the forbidden state at a minimal computational cost. We also
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provide a generalization for dealing with an arbitrary number
of Pauli-forbidden states in a computationally efficient manner.
This will be essential when moving to heavy systems.

This work lays the ground to now proceed to three-body
scattering with EST-separable interactions. In the separable
formulation, the Coulomb interaction can be accurately taken
into account even for complex nuclei with large Z as outline
in Ref. [16]. The next step is to tackle d + A elastic scattering
below and above the three-body breakup threshold, followed
by the ultimate goal of applying the method to deuteron
induced nuclear reactions on heavy ions, at energies well above
three-body breakup threshold.
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APPENDIX A: EXPLICIT REPRESENTATION OF NONSEPARABLE AND SEPARABLE FADDEEV EQUATIONS

Here we summarize the explicit expressions entering our formulation of the Faddeev Eqs. (9) and (14). Besides the t matrix,
the Faddeev equations in nonseparable form require coordinate transformations from Jacobi momenta that single out particle
i to Jacobi coordinates that single out particle k. These are most conveniently performed separately for orbital and spin space.
Therefore, the basis states of Eq. (7) are first recoupled into an LS basis and then the transformation is applied. The resulting
geometrical function is then

Gαkαi
(pkqkx) =

∑
LS

(2S + 1)
√

(2Jij + 1)(2Jk + 1)(2Jjk + 1)(2Ji + 1)

⎧⎨
⎩

lk sk Jij

λk jk Jk

L S J

⎫⎬
⎭
⎧⎨
⎩

li si Jjk

λi ji Ji

L S J

⎫⎬
⎭

×8π2
L∑

M=−L

{
Y ∗

lk
(p̂k) Y ∗

λk
(q̂k)
}LM{

Yli ( ̂−α �pk − β �qk) Yλi
( ̂�pk − γ �qk)

}LM

× (−)si+2ji+jj +jk

√
(2sk + 1)(2si + 1)

{
ji jj sk

jk S si

}
. (A1)

The spherical harmonics Ylm(p̂) dependent on the angles p̂ of the vector �p. For the evaluation, we choose a coordinate system
where the pair momentum is angular independent and the spectator momentum is in the x-y plane:

�pk =
⎛
⎝ 0

0
pk

⎞
⎠, �qk =

⎛
⎝qk

√
1 − x2

0
qkx

⎞
⎠ . (A2)

The curly brackets grouping the spherical harmonics indicate that they are coupled to a state of total orbital angular momentum
L and third component M . The mass ratios are given by

α = mk

mj + mk

,

β = (mi + mj + mk) mj

(mi + mj )(mj + mk)
, (A3)

γ = mi

mi + mj

.

For this case, the shifted momenta are given by

π ′
i (pkqkx) =

√
α2p2

k + β2q2
k + 2αβpkqkx,

(A4)
χ ′

i (pkqkx) =
√

p2
k + γ 2q2

k − 2γpkqkx.
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For the derivation, we followed similar steps as in Ref. [34]. Different but equivalent expressions that involve Legendre
polynomials can be derived [51]. We used the ones given above since the numerical implementation is stable even for large
orbital angular momenta.

For the derivation of Eq. (14), we insert the separable expansion Eq. (13) into the Faddeev equations. It is then advantageous
to substitute the p′

k integral by an integral over qi or qj , respectively. The Faddeev equations then read

ψ
αk

k (pk,qk) = G0
(
Eqk

,pk

)∑
α′

k

∫ 1

−1
dx

⎡
⎣∫ dqiq

2
i t

αkα
′
k

k

(
pk,πk; Eqk

)∑
α′

i

G̃α′
kα

′
i
(qkqix)ψ

α′
i

i (π ′
i ,qi)

+
∫

dqjq
2
j t

αkα
′
k

k

(
pk,πk; Eqk

)∑
α′

j

G̃α′
kα

′
j
(qkqjx)ψ

α′
j

j (π ′
j ,qj )

⎤
⎦. (A5)

In this case, the geometrical function is defined by

G̃αkαi
(qkqix) =

∑
LS

(2S + 1)
√

(2Jij + 1)(2Jk + 1)(2Jjk + 1)(2Ji + 1)

⎧⎨
⎩

lk sk Jij

λk jk Jk

L S J

⎫⎬
⎭
⎧⎨
⎩

li si Jjk

λi ji Ji

L S J

⎫⎬
⎭

×8π2
L∑

M=−L

{
Y ∗

lk
( ̂γ �qk + �qi) Y ∗

λk
(q̂k)
}LM{

Yli ( ̂−�qk − α�qi) Yλi
(q̂i)
}LM

×(−)si+2ji+jj +jk

√
(2sk + 1)(2si + 1)

{
ji jj sk

jk S si

}
. (A6)

The momentum vectors are chosen as

�qk =
⎛
⎝ 0

0
qk

⎞
⎠ �qi =

⎛
⎝qi

√
1 − x2

0
qix

⎞
⎠, (A7)

and the shifted momenta change to

πk(qkqix) =
√

γ 2q2
k + q2

i + 2γ qkqix,
(A8)

π ′
i (qkqix) =

√
q2

k + α2q2
i + 2αqkqix.

Using this form of the Faddeev equations, it is easy to read off Eq. (14). Since the form factors of the separable interaction are
given a priori, it is possible to precalculate the angular integral leading to the definition

Z(ki)
nαk,ναi

(qk,qi) =
∫ 1

−1
dx hαk

n (πk)G̃αkαi
(qkqix)G0

(
Eqi

,π ′
i

)
hαi

ν (π ′
i ) . (A9)

The wave functions cannot be represented in a separable form. They are obtained from ψ
αk

k (pk,qk) using Eq. (2). Thereby further
coordinate transformations using either Gαkαi

(pkqkx) or G̃αkαi
(qkqix) are required to represent all three Faddeev components in

the same set of coordinates.

APPENDIX B: PROJECTING PAULI-FORBIDDEN STATES IN CASE OF SEPARABLE POTENTIALS

In order to set up the formulation for projecting a Pauli-forbidden state to infinity when using separable potentials based in
the EST formulation, let us have a closer look at the functions |η(z)〉 and 〈η̄(z)| of Eqs. (21). The explicit momentum space
representation reads

〈η̄(z)|p〉 = 〈φ|[1 + G0(z)t(z)]|p〉
= 〈φ|G(z)G0(z)−1|p〉
= z − Ep

z − Eb

〈φ|p〉

= z − Ep

z − Eb

〈φ|V G0(Eb)|p〉

= z − Ep

z − Eb

〈φ|V |p〉 1

Eb − Ep

, (B1)
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where we used the Schrödinger equation for 〈φ|p〉. The momentum subscript, p, on the energy variable, E, implies Ep = p2/2μ,
while the bound state energy is represented by Eb. Similarly, one obtains

〈p′|η(z)〉 = 〈p′|[1 + t(z)G0(z)]|φ〉
= 1

Eb − Ep′
〈p′|V |φ〉z − Ep′

z − Eb

. (B2)

Putting everything together and setting z ≡ E, Eq. (24) takes the explicit form

t̃(p′,p; E) = t(p′,p; E) − (E − Ep′)

(Eb − Ep′ )

(E − Ep)

(Eb − Ep)

〈p′|V |φ〉〈φ|V |p〉
E − Eb

. (B3)

The above expression clearly shows that the half-shell elements of t̃(p′,p; E) and t(p′,p; E) are identical, and for E → Eb the
pole of t is removed for t̃ . However, due to the differences (E − Ep′ ) and (E − Ep), and having in mind that energy E of the
subsystem depends on the spectator momentum q in the Faddeev equations, t̃(p′,p; E) is not yet in the separable form needed
in Eq. (14). At a specific off-shell support energy El and support momentum pl we have

t̃(p′,pl ; El) = t(p′,pl ; El) − (El − Ep′)

(Eb − Ep′ )

〈p′|V |φ〉〈φ|V |pl〉
El − Eb

(
El − E

pl

)
(
Eb − Epl

) , (B4)

having in mind that these off-shell EST functions are characterized by {El,pl}, and only need to be linearly independent and
solutions of a Lippmann-Schwinger type integral equation [42]. The form factors that take into account the projection of the
Pauli-forbidden state to infinity read

〈p′|t̃(El)|pl〉 ≡ h̃El,pl
(p′) = hl(p

′) − (El − Ep′)

(Eb − Ep′ )
hb(p′)

1

El − Eb

hb(pl)

(
El − Epl

)
(
Eb − Epl

) , (B5)

where hl(p′) ≡ t(p′,pl ; El) and hb(p′) ≡ 〈p′|V |φ〉. These form factors also define the strength constants λnm [42].

APPENDIX C: PROBABILITY OF THE PAULI-FORBIDDEN STATE IN THE 6Li GROUND STATE WAVE FUNCTION

The Pauli projection method described in Sec. II B shifts the energy of the forbidden two-body bound state to positive infinity.
To estimate the probability of the Pauli-forbidden state in the 6Li ground state three-body wave function, one needs to project it
onto the subspace comprising of product states between the bound nα pair and the spectator nucleon. The two-body projector
P 2b

φ = |φjp

β β jpmj 〉〈φjp

β β jpmj | is defined for that purpose, where the two-body bound state is characterized by the total pair
angular momentum jp and its projection along the z-axis mj . The index β represents the spins and orbital angular momenta of the
pair which couple to jp separating different angular momentum components of the two-body bound state. Since P 2b

φ is defined
in the two-body subspace, its application in the three-body space requires summation over the spectator quantum numbers as
well as an integration over the spectator momentum. The projection operator in the three-body space thus takes the form

Pφ =
∑

β

∑
smsmj

∫
d �q ∣∣�q sms φ

jp

β β jpmj

〉 〈�q sms φ
jp

β β jpmj

∣∣, (C1)

where s is the spin of the spectator with ms being its projection along the z axis. The spectator momentum is denoted by �q. Since
we are using a partial wave expansion to represent the three-body system, it is advantageous to represent the spectator in terms of
partial wave states |q(λs)JmJ 〉. The angular dependence is expanded in terms of a spectator orbital angular momentum λ which
is coupled with the spectator spin s to a total spectator angular momentum J and its third component mJ . Finally, we couple
the spectator and two-body bound state angular momenta to the total three-body angular momentum J and its third component
M . In terms of these states, the projector can be rewritten as

Pφ =
∑

β

∑
λsJ JM

∫ ∞

0
dq q2

∣∣q(jp(λs)J )JM φ
jp

β β
〉 〈

q(jp(λs)J )JM φ
jp

β β
∣∣. (C2)

The sum over the angular momentum quantum numbers β, λ, s, J , J , and M and the integral over q implies that all possible
configurations the spectator and the bound pair are included. Applying Pφ to the three-body wave function yields

|�P 〉 ≡ Pφ|�JM〉. (C3)

From Eq. (C3) we see that the probability of the state |φjp

β β jpmj 〉 is given by

PT DB = ‖�P ‖2

= 〈�JM |P †
φ Pφ|�JM〉. (C4)
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Since Pφ is Hermitian and fulfills P 2
φ = Pφ , the probability can be recast as the expectation value

PT DB = 〈�JM | Pφ|�JM〉

=
∑

β

∑
λsJ JM

∫ ∞

0
dq q2

〈
�JM

∣∣q(jp(λs)J )JM φ
jp

β β
〉 〈

q(jp(λs)J )JM φ
jp

β β
∣∣�JM

〉
. (C5)

To evaluate the quantity 〈q(jp(λs)J )JM φ
jp

β β |�JM〉 we insert a complete set of momentum eigenstates

〈
q(jp(λs)J )JM φ

jp

β β
∣∣�JM

〉 = ∑
α′

∫ ∞

0
dp′p′2 dq ′q ′2〈q(jp(λs)J )JM φ

jp

β β
∣∣p′q ′α′JM

〉〈p′q ′α′JM|�JM〉

=
∫ ∞

0
dp′p′2 φ

jp

β (p′) �J
α (p′q ′). (C6)

In the last step, we used that the quantum numbers of the projector agree with the definition of α′ and therefore uniquely define
all quantum numbers. The wave functions are independent of the third component and the magnitude of the spectator momentum
is fixed by the projector, too. Based on this result, the desired probability is

PT DB = 〈�JM | Pφ|�JM〉

=
∑

α

∫ ∞

0
dq q2

∣∣∣∣
∫ ∞

0
dp′p′2 φ

jp

β (p′) �J
α (p′q ′)

∣∣∣∣
2

, (C7)

where α is short hand notation for β and λ, s, J , J , and M as defined in Eq. (7) in agreement with Eq. (33).
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