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Testing the validity of the surface approximation for reactions induced by weakly
bound nuclei with a fully quantum-mechanical model
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We examine the validity of surface approximation for breakup reactions using a fully quantum-mechanical
model proposed by Ichimura, Austern, and Vincent (IAV). Analogous to the semiclassical picture, we introduce
radial cut-offs to scattering waves in the IAV framework, which we refer to as IAV-cut. Systematic calculations
are conducted for nonelastic breakup reactions induced by 6Li and deuterons at various incident energies. A
comparison between the results obtained from IAV and IAV-cut is performed. The excellent agreement observed
between IAV and IAV-cut in 6Li induced reactions, regardless of incident energy and target nuclei, signifies their
insensitivity to the inner part of the scattering wave function, thus providing validation for the semiclassical
picture. However, for deuteron induced breakup reactions, the IAV-cut results exhibit a suppression in the cross
section, suggesting a strong dependence on the interior wave functions. This suppression is further enhanced as
the incident energy increases.
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I. INTRODUCTION

The breakup of a nucleus into two or more fragments is
an important mechanism among various channels of nuclear
reactions. With the recent advancements in radioactive beam
facilities, measuring the breakup reactions of rare atomic
nuclei is now feasible [1]. This development has greatly
enhanced our understanding of nuclear properties such as
binding energy, spectroscopic factors, and angular momentum
[2]. Presently, coupled-channel methods which can deal with
the excitation of the internal freedom has been widely used to
calculate the cross section of rare nuclei induced reactions [3].

In some experiments, weakly bound nuclei are produced
to bombard with a target, ultimately fragmenting into two
separate components. From an experimental perspective, de-
termining all particles simultaneously and specifying the final
states of each fragment are challenging. Alternatively, if the
experiment is designed to detect only one of the fragments
inclusively, the process can be simplified to a + A → b + B∗,
where the projectile a is assumed to have a two-body structure
(b + x) and B∗ represents any possible state of the x + A sys-
tem. This process of inclusive breakup has been extensively
studied in experimental research [4–8]. If the three particles,
b, x, and A, remain in their ground state after the breakup, the
corresponding process is referred to as elastic breakup (EBU).
Breakup accompanied by target excitation, fusion between
x and A, and any possible mass rearrangement between x
and A is referred to as nonelastic breakup (NEB). Precise
calculations for NEB are necessary, for example, to exam
the semiclassical approach which has been widely applied to
knockout reaction [9], and in the surrogate method applied
to study nuclear synthesis and the chemical evolution of stars
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[10]. Therefore, the evaluation of NEB cross sections is of
great value both theoretically and experimentally.

In 1985, Hussein and McVoy (HM) derived one of the
earliest closed-form formulas for the inclusive breakup cross
section [11]. HM’s derivation provided deep insight through
the summation over all x-A states. By utilizing the Glauber
approximation to analyze scattering waves, they obtained an
appealing and intuitive form with a clear probability interpre-
tation of the breakup reaction. This evaluation of the NEB
cross section is exclusively dependent on the asymptotic prop-
erties (S matrix) between the fragments (b or x) and the target.
This is a consequence of employing the semiclassical Glauber
approximation. The HM model, along with structure calcula-
tions, finds extensive application in spectroscopic studies of
one-nucleon removal reactions [9,12,13]. Furthermore, Baye
and colleagues developed the dynamical eikonal model to
address dissociation cross sections [14]. Rather than employ-
ing the adiabatic approximation used in the standard eikonal
model for phase shift evaluation, they numerically solve
a semiclassical time-dependent Schrödinger equation using
straight-line trajectories. This model has found application in
investigating reactions involving halo nuclei [15,16].

The transfer to continuum (TC) model is another success-
ful semiclassical approach used to evaluate the NEB cross
section [17]. In the TC model, the transfer amplitude between
the initial and final states is calculated using a time-dependent
approach [18]. This transfer amplitude is calculated by using
the asymptotic part of the initial bound state and the final
continuum state. The main principle of this semiclassical
approximation is to utilize the classical trajectory for approx-
imating the relative motion between the projectile and the
target. This semiclassical TC method has been widely applied
to large numbers of break-up reactions, from stable to exotic
projectiles [19,20].
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In spite of the tremendous success attained by the previ-
ously mentioned semiclassical models, research has already
been conducted to establish a quantum-mechanical model. In
the early 1980s, Udagawa and Tamura (UT) [21] developed
their NEB formalism using distorted wave Born approxima-
tion, while Austern and Vincent (AV) [22] carried out a similar
derivation. After a longstanding dispute between these two
groups, the equivalence of these two derivations has finally
been proved in the work of Ichimura, Austern, and Vincent
(IAV) [23]. Due to the computational limitations, this model
is not implemented numerically until recently [24–26], and
its validity has finally been tested through numbers of appli-
cations [27,28]. This fully quantum-mechanical model starts
from the effective three-body Hamiltonian, making no as-
sumptions on the trajectory, and maintains the conservation
laws naturally. The EBU is a process that all fragments and
targets are properly separated, which allows us to assume
that the cross section of this process depends solely on the
asymptotic part of wave functions. Therefore, the EBU cross
sections are unaffected by the interior part of wave functions
[29]. Nevertheless, this conclusion may not apply to NEB,
because NEB contains the fusion channel between the frag-
ments and the target, and the calculation requires a short-range
imaginary part of the optical potential to describe this fusion
process. However, the HM model with Glauber approximation
ignores the inner part of the scattering wave function due to
the semiclassical approximation, which lacks a direct com-
parison to fully quantum-mechanical approaches. Here, we
present a study on this surface approximation,1 by introducing
a radial cut-off to the scattering functions, where no other
semiclassical assumptions need to be taken. We refer to this
cut-off method in the IAV framework as IAV-cut. By varying
the cut-off radius, we study the sensitivity to the inner wave
functions, and thus test the validity of these semiclassical
interpretations of reaction processes.

The paper is organized as follows. In Sec. II we review the
formalism of the IAV model and raise our surface approxima-
tion through the radial cut-off. In Sec. III we apply this cut-off
to several inclusive reactions induced by 6Li and deuterons.
Finally, in Sec. IV we summarize the main results of this work
and outline some future developments.

II. THEORETICAL FRAMEWORK

In this section, we briefly review the IAV model [23,30]
and define our corresponding surface approximation in the
IAV model.

The inclusive breakup reaction under study takes the form

a(= b + x) + A → b + B∗, (1)

where the projectile a has a two-body structure (b + x), b is
the detected particle, and B∗ denotes any possible final state
of the x + A system. In the IAV model, fragment b is called
the spectator, and fragment x is called the participant.

1In this study, we refer to surface approximation as a procedure that
relies on the asymptotic properties of the scattering wave function.

The IAV model gives the NEB cross section

d2σ

d�bdEb

∣∣∣∣
NEB

post
= − 2

h̄va
ρb(Eb)〈ψx(kb)|Wx|ψx(kb)〉, (2)

where va is the projectile-target relative velocity, ρb(Eb) =
μbkb/[(2π )3h̄2] is the density of states for particle b, μb and kb

are the reduced mass and wave number, respectively, Wx is the
imaginary part of Ux which describes x + A elastic scattering,
ψx is the so-called x-channel wave function which is obtained
by solving the inhomogeneous differential equation

(Ex − Kx − Ux )ψx(kb, rx) = 〈rxχ
(−)
b (kb)|Vpost|χ (+)

a φa〉. (3)

Here, Ex = E − Eb, Kx is the kinetic energy operator for rel-
ative motion between fragment x and target A, χ

(−)
b is the

scattering wave function with incoming boundary condition
describing the scattering of b in the final channel with respect
to the x + A subsystem, Vpost = Vbx + UbA − UbB is the post
form transition operator, where Vbx is the potential binding two
clusters b and x in the initial composite nucleus a, UbA is the
fragment-target optical potential, UbB is the optical potential
in the final channel, χ (+)

a is the distorted-wave describing the
a + A elastic scattering with an outgoing boundary condition,
and φa is the initial ground-state of the projectile a. To sim-
plify the calculations, we ignore intrinsic spins. As for the
angle integrated NEB cross section, we have the partial wave
expansion form of Eq. (2),

dσ

dEb

∣∣∣∣
NEB

post
= − 1

2π h̄va
ρb(Eb)

1

2lbx + 1

×
∑
lalblx

∫
drxr2

x

∣∣Rlalblx (rx )
∣∣2

Wx(rx ), (4)

where Rlalblx represents the radial part in the partial wave
expansion of ψx. The variables la, lb, lbx, and lx represent the
relative angular momenta between a and A, b and B∗, b and x,
and x and A, respectively. Specifically, lbx is determined by the
initial bound state of the projectile, while the maximum values
of la, lb, and lx are selected to ensure the convergence of the
cross section. More details of the IAV model can be found in
Ref. [24] and its Appendix.

When the Coulomb interaction is taken into consideration,
the incoming and outgoing distorted wave have the partial
wave expansions

〈ralama|χ (+)
a (ka)〉 = 4π

kara
ila eiσla ula (ra)

[
Y ma

la
(k̂a)

]∗
, (5)

〈χ (−)
b (kb)|rblbmb〉 = 4π

kbrb
i−lbeiσlb ulb (rb)Y mb

lb
(k̂b), (6)

where ka and kb are the relative wave numbers of the incident
and outgoing channel, σla and σlb are the Coulomb phase shift.
One important numerical task is to determine the radial wave
function ula (ulb ), and our surface approximation method focus
on the cut-off of these wave functions. In particular, we set the
radial wave function ula (ulb ) to zero below a specific cut-off
radius.

The surface approximation in nuclear reactions often
means using the asymptotic behavior of the wave function
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to calculate the cross section [31,32]. Instead of solving the
radial Schrödinger equations, others use the eikonal method
to calculate the phase shift [11]. According to the unitarity
of the S matrix, the cross section of NEB, which represents
the absorption of participant x by target A, can be expressed
using S matrices [33]. The key point of this kind of surface
approximation is to extract the reaction information from
the asymptotic behavior (S matrix). In other words, only the
exterior part of the scattering wave function influences the
cross sections. However, in the IAV model, the key step is
to solve the differential inhomogeneous equation to obtain the
x-channel wave function. This wave function is subsequently
used for computing the NEB cross section. As suggested by
Baur [29], one suitable surface approximation for the IAV
model may be replacing the wave function with some suitable
form. The simplest one is the asymptotic form

ul (r) ≈ i

2
[H (−)

l (r) − SlH
(+)
l (r)]. (7)

However, due to the irregularity of this asymptotic form at
the origin, it cannot be implemented numerically. In order to
prevent the divergence at the origin and maintain the boundary
condition of the wave function, we introduce a radial cut-off
to the scattering wave functions both in the entrance and the
exit channels consistently, which is mentioned by Baur [29]
as well:

ula (r) = ulb (r) = 0 r < Rcut, (8)

where Rcut is the cut-off radius which is chosen according to
the interaction radius of the optical potential. It is important to
note that implementing this cut-off will result in a discontinu-
ity in the wave functions ula (r) and ulb (r) at the cut-off radius.
In the subsequent discussion, we will refer to the calculation
using this cut-off method as IAV-cut.

The angular integrated NEB cross section can be directly
obtained by using the radial component of the x-channel wave
function, Rlalblx . Therefore, it is crucial to investigate the
impact of the cut-off, especially when summing over lb and
lx and only retaining the dependence on la, which represents
the angular momentum between the projectile and target. We
denote this new radial part wave function as Rla (rx ), and its
modulus square has the relation to Rlalblx (rx ):

∣∣Rla (rx )
∣∣2 =

∑
lblx

∣∣Rlalblx (rx )
∣∣2

. (9)

Then the angular integrated NEB cross section can be ob-
tained by

dσ

dEb

∣∣∣∣
NEB

post
= − 1

2π h̄va
ρb(Eb)

1

2lbx + 1

×
∑

la

∫
drxr2

x

∣∣Rla (rx )
∣∣2

Wx(rx ), (10)

III. APPLICATION

In this section, we present systematic calculations for the
inclusive breakup induced by 6Li and deuteron projectiles
and compare the results of IAV with IAV-cut. The choice of

cut-off radii is critical for our implementation. A cut-off radius
that is too small will have little impact due to the removal of
only a small part of the wave function. However, a cut-off
radius that is too large will obscure the interacting details
between the two nuclei, leading to a significant decrease in the
cross section. In the global optical potential model [34–37],
the radius parameter that we used in the current study takes
the form

R0 = r0 × A1/3
T , (11)

where r0 is the geometric parameter of optical potential, AT

is the mass number of the target. The parameter R0 represents
the effective range of the nuclear force. The mass number of
the projectile is often omitted in the fitting of the global optical
potential. Consequently, we select the cut-off radius to be of
a similar order of magnitude as R0. This selection of the cut-
off radius accounts for the variability in the effective range of
interaction across different target nuclei.

A. Convergence of the numerical method

As previously mentioned, introducing a radial cut-off for
the wave function leads to a discontinuity at the cut-off ra-
dius Rcut. In numerical calculations, the Gaussian quadrature
method is widely used to save computing time by integrat-
ing the wave function. However, accurately capturing this
discontinuity at the cut-off radius Rcut often requires addi-
tional integration quadrature points. Consequently, using an
excessive number of grid points in the integration significantly
increases computer memory usage and computation time.
Moreover, the Gaussian quadrature method is characterized
by having more grid points at the upper and lower limits
of the integration interval compared to the equally spaced
grid points of Simpson’s rule and the trapezoidal rule. As a
result of implementing a radial cut-off for the wave function,
some quadrature points near the origin in the Gaussian method
do not contribute to the overall integration result since the
integrand becomes zero due to the cut off. This leads to
the waste of our computational resources. To improve the
numerical efficiency, when evaluating the source term, which
is the inhomogeneous term on the right-hand side of Eq. (3),
we choose the integral2 region to start from Rcut, rather than
setting the wave functions to zero and carrying out the integral
from the origin. By reselecting the integration interval in this
way, we no longer calculate the parts that do not contribute
to the cross section, thus achieving rapid convergence of the
integration result with fewer integration points.

To test the validity of this method, we consider the
28Si(d, pX ) reaction at the incident kinetic energy of 30 MeV
in the laboratory frame and relative kinetic energy between
p and 29Si∗ of 10 MeV in the center of mass (c.m.) frame.

2More details of the evaluation of this source term can be seen in
Eq. (13) of Ref. [38] and its Appendix. The variable rbx in Eq. (13)
of Ref. [38] is expressed by the coordinate set (rx, rb) as presented
in Eq. (A5) in the Appendix. The choice of rb starting from Rcut

will break the continuity of wave function in rbx as well, so a test
of convergence is necessary.
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FIG. 1. NEB cross section of 28Si(d, pX ) at Ed = 30 MeV with
relative outgoing energy Ep = 10 MeV, as a function of numbers of
Gaussian quadrature points. The dotted horizontal line represent the
cross section with 1000 Simpson’s grids.

We plotted the differential cross section dσ/dE in Fig. 1 as
a function of the number of Gaussian quadrature points. The
figure shows that increasing the number of quadrature points
from 25 to 50 results in a sharp drop in the cross section, but
further increasing the number of points leads to little change in
the cross section and good convergence. Our test also demon-
strated that to achieve the same convergence using Simpson’s
rule (shown as the dotted horizontal line), we needed to em-
ploy a minimum of 1000 grids, which is significantly greater
than the number of quadrature points (>100) required for
the Gaussian method. The good convergence shown in the
figure supports our choice of the integral region. Similar rapid
convergence can be achieved in other reaction systems as well.

B. Application to (6Li, αX )

Since the Glauber approximation is widely used in the
heavy ion induced knockout reactions [12,39], we present
studies on these reactions with IAV-cut to test the validity of
the surface approximation. Here, we consider the calculations
for the 208Pb(6Li, αX ) reaction. We treat the 6Li as α + d
cluster in the following discussion. The incoming channel
optical potential, which describes the 6Li + 208Pb elastic scat-
tering, is taken from Ref. [34]. Besides, the α + 210Bi∗ and
α + 208Pb interaction are adopted from Ref. [35], and the
d + 208Pb interaction is taken from Ref. [36]. The potential
binding fragments α and d in the initial composite projectile is
assumed to take the Woods-Saxon (WS) form with the follow-
ing parameter set: av = 0.7 fm and rv = 1.15 fm. The depth
of this WS potential is fitted to reproduce the experimental
binding energy of 6Li.

The nominal Coulomb barrier for this system is around
30.1 MeV [40]. The model space needed for converged so-
lutions of the IAV model contains partial waves l � 90 in the
6Li + 208Pb and α + 210Bi∗ relative motion, and l � 40 in the
d + 208Pb channel at Elab = 100 MeV. The model space we
chose was large enough to ensure the convergence of NEB
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40

41
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208
Pb(

6
Li,αX) at 100 MeV

R0= 9.08 fm

FIG. 2. The angular integrated differential NEB cross section of
208Pb(6Li, αX ) as a function of the outgoing energy Eα in the c.m.
frame, at a laboratory energy of 100 MeV. The solid line represents
the result from the IAV model, whereas the dot-dashed, dashed, and
dotted lines correspond to the cases with cut-off radii of 4 fm, 6 fm,
and 10 fm for IAV-cut, respectively.

cross section. For the 208Pb(6Li, αX ) reaction, the radius pa-
rameter of the imaginary part of the optical potential between
6Li and 208Pb is R0 = 9.08 fm [34], so we choose the cut-off
radius to be 4 fm, 6 fm, and 10 fm according to the previous
discussion on the selection of cut-off parameter. It is important
to note that a cut off is applied consistently to both the incom-
ing channel scattering wave function of 6Li + 208Pb and the
outgoing channel scattering wave function of α + 210Bi∗. The
differential cross section of this system at Elab = 100 MeV
as a function of the outgoing energy of α particles in c.m.
frame is presented in Fig. 2. The solid line corresponds to
results from the IAV model, while the dot-dashed, dashed,
and dotted lines represent the cases for IAV-cut with cut-off
radii of 4 fm, 6 fm, and 10 fm, respectively. First we notice
that the four curves share the same shape, and the peaks are
located around the same outgoing energy. We observe that
for outgoing kinetic energies lower than 50 MeV or higher
than 75 MeV, the four curves almost overlap, suggesting that
the effect of the cut-off radius is minimal. However, between
50 MeV and 75 MeV, an increasing difference can be observed
as the cut-off radius increases. Nevertheless, even in the worst
case (i.e., with a 10 fm cut off), the difference is still smaller
than the typical experimental uncertainty. Interestingly, we
can also see that the difference between the 4 fm cut and 6 fm
cut cases is very small and almost invisible in the figure. This
indicates that the corresponding part from 4 to 6 fm of the
wave function does not affect the cross section significantly.
These results suggest that IAV-cut produces satisfactory out-
comes compared to the original IAV calculation.

Given the substantial importance of the angular momentum
dependency of cross sections, we proceeded to examine the
partial wave distribution of the cross sections and the effects of
this cut-off method on the cross sections. The projectile-target
angular momentum distribution of integrated NEB cross sec-
tion for the same reaction is shown in Fig. 3. It is observed that
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FIG. 3. Integrated NEB cross section, as a function of the relative
angular momentum between 6Li and 208Pb, for the 208Pb(6Li, αX )
reaction at Elab = 100 MeV. The solid line corresponds to results
from the IAV model, while the dot-dashed, dashed, and dotted lines
represent the cases for IAV-cut with cut-off radii of 4 fm, 6 fm, and
10 fm, respectively.

the peaks are determined at approximately the same value of
la which stands for the relative angular momentum between
6Li and 208Pb, and all curves exhibit the same bell-shaped
distribution as described in [41]. The cross section shows
a strong absorption effect of the 6Li + 208Pb interaction for
low partial waves (la � 20), thus leading to zero NEB cross
section. Furthermore, the impact of the cut off is only evident
for partial waves within the range 20 � la � 55 with higher
partial waves remaining unaffected.

Mathematically, wave functions corresponding to large
angular momentum states are equal to zero at sufficiently
small radii because it is hard to penetrate into the high cen-
trifugal barrier. As a result, setting the inner part of these
wave functions to zero will not change the calculation of the
cross section. These results illustrate a consistent agreement
between cases using various radial cut offs and the direct cal-
culation based on the IAV model. This confirmation validates
the utilization of the surface approximation in this reaction.
In this context, the term surface approximation implies that
the NEB cross section remains unaffected by the inner part of
the incoming scattering wave of 6Li + 208Pb and the outgoing
scattering wave of α + 210Bi∗.

We pick out the la = 20, 48, and 55 cases and draw |Rla |2
at relative outgoing kinetic energy Eα = 64 MeV in c.m.
frame in Figs. 4(a), 4(b), and 4(c), respectively. The partial
waves with la = 20, 48, and 55 belong to distinct regions as
discussed in Fig. 3: Strong absorption where the NEB cross
section is close to zero, the maximum value of σl where the
difference between the results obtained by the IAV model and
IAV-cut is significant, and the region where the centrifugal
barrier plays an influential role. The solid lines represent
the IAV results, while the dotted lines denote the IAV-cut
results with 10 fm cut offs. First, the difference between wave
functions shown in Fig. 4(a) does not exhibit a significant dif-
ference. Due to the strong absorption effect of the 6Li + 208Pb
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FIG. 4. Modulus square of the radial part of d + 208Pb wave
function defined in Eq. (9) for (a) la = 20, (b) la = 48, and (c) la =
55, for the 208Pb(6Li, αX ) reaction at Elab = 100 MeV and relative
outgoing kinetic energy Eα = 64 MeV. The solid line represents the
IAV result, while the dotted line corresponds to the IAV-cut case with
10 fm cut off. The product of the imaginary part of the d + 208Pb
potential and the wave function for (d) la = 20, (e) la = 48, and
(f) la = 55.

interaction, the probability flux for the low angular momen-
tum component is removed to the fusion channel, resulting in
a relatively small wave function for the breakup process. Thus,
this low partial wave makes a minimal contribution to the
NEB cross section. As for the la = 48 case shown in Fig. 4(b),
a small difference occurs in the range of 15–25 fm and near
5 fm, while leaving its asymptotic parts unaltered. Since the
EBU cross section is evaluated via the boundary conditions
(S matrices) [33], this surface approximation is valid for EBU
calculations as well. Additionally, as shown in Fig. 4(c), no
apparent difference appears in the wave functions at la = 55.
This finding is consistent with the results in Fig. 3, which
also does not exhibit clear changes in the high partial wave
component.

As discussed in Eq. (10), NEB cross sections can be eval-
uated by |Rla |2Wx, which is the product of the modulus square
of the wave function and the imaginary part of the d + 208Pb
optical potential. The products for the la = 20, 48, and 55
cases are presented in Figs. 4(d), 4(e), and 4(f), respectively.
The solid lines represent the IAV results, while the dotted
lines denote the IAV-cut results with 10 fm cut offs. It can
be observed that for all three partial waves in Figs. 4(d), 4(e),
and 4(f), the value of the product goes to zero rapidly in the
region r > 15 fm, owing to the short-range characteristic of
the potential, thus making no contribution to the cross section.
As a result, any changes on the wave function outside 15 fm
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FIG. 5. Integrated NEB cross section, as a function of the relative
angular momentum between d and 208Pb, for the 208Pb(d, pX ) reac-
tion at Ea = 70 MeV. The solid line corresponds to results from the
IAV model, while the dot-dashed, dashed, and dotted lines represent
the cases for IAV-cut with cut-off radii of 4 fm, 6 fm, and 8 fm,
respectively.

will have no impact on the calculation of NEB cross section.
The difference shown in panel (d) is significant; however,
the magnitude of the quantity depicted in the figure is small,
thus resulting in a relatively negligible NEB cross section.
Panels (e) and (f) show no apparent difference between the
IAV result and the IAV-cut result for the la = 48 and 55 cases.
This observation supports the conclusion that a cut off on
the scattering wave functions ula and ulb does not alter the
calculation of NEB cross sections.

C. Application to (d, pX )

On the other hand, we study the deuteron induced inclusive
breakup reactions to further investigate the validity of the
surface approximation. First, we carry out the calculation for
the 208Pb(d, pX ) reaction at Elab = 70 MeV. The proton-target
and neutron-target interactions were adopted from the global
parametrization of Koning and Delaroche (KD02) [37]. The
incoming channel interaction between deuteron and the target
is adopted from Ref. [36]. For the interaction binding the
proton and the neutron in the projectile, we considered the
Gaussian form

V (r) = V0 exp(−r2/a2), (12)

where a = 1.484 fm, and V0 is fitted to reproduce the experi-
mental binding energy of deuteron. The model space needed
for converged solutions contains partial waves l � 38 in the
d + 208Pb and p + 209Pb∗ relative motion, and l � 18 in the
n + 208Pb channel at Elab = 70 MeV.

Similar to the 6Li induced cases, here, we examine the
partial wave dependence of the NEB cross section for this
reaction. Figure 5 presents integrated NEB cross section as
a function of d + 208Pb relative angular momentum. The solid
line corresponds to results from the IAV model, while the
dot-dashed, dashed, and dotted lines represent the cases for
IAV-cut with cut-off radii of 4 fm, 6 fm, and 8 fm, respectively.
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FIG. 6. The modulus square of the n + 208Pb wave function |Rla |2
defined in Eq. (9) for (a) la = 10, (b) la = 15, and (c) la = 20, for the
208Pb(d, pX ) reaction at Elab = 70 MeV and relative outgoing kinetic
energy Eα = 38 MeV. The solid line represents the IAV result, while
the dotted line corresponds to the IAV-cut case with 8 fm cut off. The
product of the imaginary part of the n + 208Pb potential and the wave
function for (d) la = 20, (e) la = 48, and (f) la = 55.

The radius parameter of the imaginary part of the optical
potential between d and 208Pb is R0 = 7.87 fm [36]. From
this figure, we observed that the difference between lines only
occurs in the low partial waves (l � 20). When the cut-off
radius increases, the variation in the difference also increases.
Compared to the 6Li induced reactions, this deuteron in-
duced reaction is more sensitive to inner part of the scattering
wave, because the suppression on cross section is enhanced
gradually when the cut-off radius increases. Furthermore, in
contrast to previous cases of 6Li, no strong absorption effect
is observed due to the significant contribution of the low
partial wave component to the NEB cross section. These result
illustrates that, without a strong absorption effect, the cut off
of the low partial wave component will finally manifest in the
NEB cross section.

To account for this difference compared to the previous 6Li
induced cases, we also depicted |Rla |2 which in this case is
the modulus square of the radial part of the n + 208Pb wave
function for la = 10, 15, and 20 for this reaction at the out-
going kinetic energy Ep = 38 MeV in c.m. frame. The results
are shown in Fig. 6. For the la = 10 and la = 15 cases shown
in Figs. 6(a) and 6(b), there is a noticeable difference in the
wave function obtained from the IAV model and the IAV-cut.
Specifically, the wave function obtained from IAV-cut within
10 fm shows a significant reduction. This effect is particularly
prominent in the la = 10 case. This demonstrates that, con-
trary to the previous situation, the inner part of the n + 208Pb
wave function with low angular momentum is highly sensitive
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TABLE I. Integrated cross section of 208Pb(d, pX ) reaction at
Elab = 70 MeV for different cut-off radius.

cut-off

σNEB (mb) method
cut ula cut ulb cut both

4 fm 469 470 467
6 fm 449 441 440
8 fm 413 428 410

to the interior part of the scattering functions ula and ulb .
However, in the la = 20 case, there is no clear distinction
between the results obtained from the IAV model and the
IAV-cut. This is due to the presence of a strong centrifugal
barrier, which reduces the scattering wave function inside the
barrier to almost zero.

The products of the imaginary part of the n + 208Pb po-
tential and modulus square of n + 208Pb wave function are
also presented in Figs. 6(d), 6(e), and 6(f). Similar to the 6Li
induced cases, the values of the product go to zero rapidly
beyond the effective range of nuclear force. It can be observed
from Figs. 6(d) and 6(e) that the results obtained from the IAV-
cut are significantly suppressed compared to those obtained
from the IAV model. This suppression leads to a reduction in
the cross section for NEB in the IAV-cut. Consistent to the
results in Fig. 5, no obvious difference can be seen in Fig. 6(f)
for high partial wave components. These results explain the
suppression of the cross section in Fig. 5. Surface approxima-
tion for this deuteron induced reaction is not as appropriate as
the previous 6Li induced cases where the strong absorption
effect occurs. Nevertheless, the asymptotic behavior of the
wave functions remains unchanged, which indicates that this
surface approximation is still valid for EBU calculation.

In the previous 6Li induced case, where the IAV-cut and
IAV models yield almost identical results, the validity of
the surface approximation is supported for both the scatter-
ing wave functions ula and ulb . However, in the case of the
deuteron, it is highly important to investigate whether the
cross section suppression observed in the IAV-cut results
from the cut off of both wave functions or only one. We
computed the integrated cross section by exclusively apply-
ing a cut off to either the entrance channel scattering wave
function ula or the exit channel scattering wave function ulb .
The results are presented in Table I. The first column repre-
sents the cut-off radius, the second column displays the cross
section with a cut off applied exclusively to the incoming
channel wave function ula , while the third column shows the
cross section with a cut off applied exclusively to the exit
channel wave function ulb . The fourth column presents the
results obtained by consistently applying cut offs to both the
incoming and exit channel wave functions.The original IAV
result of the integrated cross section is 486 mb. Table I shows
that the cross sections obtained from cutting ula , ulb , and cut-
ting both of them are of comparable magnitudes for different
cut-off radii. This indicates that the cut off behaves similarly
for both ula and ulb , suggesting that no specific cut off exhibits
dominance over another. And applying a cut off to either ula
or ulb will ultimately reduce the cross section when compared

to the IAV model. In other words, both scattering wave func-
tions concurrently contribute to the overall influence on the
cross section. This can be further discussed in a theoretical
perspective. Since the wave functions in the entrance and
exit channels are represented in two different sets of Jacobi
coordinates, calculating the inhomogeneous terms in Eq. (3)
requires coordinate transformation between these two sets.
When calculating integrals, the two coordinate variables are
not completely orthogonal. Therefore, when the product of
two scattering wave functions from both the incoming and
outgoing channels is integrated, any cut off applied to one
wave function will also exclude the region near the origin of
the other wave function. Consequently, the excluded region
of the other wave function will not contribute to the final
determination of the cross section, regardless of whether this
part is cut or not. In summary, the contribution of the internal
parts of the incident and outgoing scattering wave functions
cannot be separated when calculating the cross section.

D. Discussion

Based on the previous calculations and a comparison
between the IAV and IAV-cut models, we conclude that
the surface approximation is valid for 6Li-induced breakup
reactions but does not yield satisfactory results for deuteron-
induced cases. In order to further investigate the validity of the
surface approximation in the IAV framework, we performed
systematic calculations of 6Li and deuterons induced inclusive
breakup reactions considering different incident energies and
target masses.

We carry out the calculations for the 28Si(d, pX ) reac-
tions at Elab = 2, 6, 10, 20, 30, 60, and 100 MeV, the
208Pb(d, pX ) reactions at Elab = 20, 30, 50, 70, and 100 MeV,
the 28Si(6Li, αX ) at Elab = 5, 20, 30, 40, 50, and 100 MeV,
and 208Pb(6Li, αX ) reactions at Elab = 30, 40, 60, 80 and
100 MeV. The numerical computation of the NEB cross sec-
tion using the IAV model are heavy tasks. This is primarily
due to the slow convergence of wave functions for many
partial waves, the large memory required to store these wave
functions, and the need for more grid points to ensure the
convergence of the numerical integration. As a consequence,
our systematic analysis is computationally intensive and has
reached our computing limitations. Thus, we were only able
to examine a restricted range of incident energies and target
masses, and our conclusions are applicable only under these
limited circumstances.

Here, we introduce the relative deviation of the integrated
NEB cross section to quantify the difference between the IAV
and IAV-cut:

δ = |σIAV − σcut|
σIAV

× 100%, (13)

where σcut is the integrated NEB cross section calculated with
IAV-cut and σIAV is result computed directly with the IAV
model.

Figure 7 shows the relative deviation for the deuteron-
induced cases discussed above at different incident energies.
Panels (a) and (b) correspond to the 28Si(d, pX ) and
208Pb(d, pX ) cases, respectively. The cut-off radii are selected
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FIG. 7. Relative deviation of integrated NEB cross section for
(a) 28Si(d, pX ), (b) 208Pb(d, pX ). Cut-off radii are selected according
to the potential parameters, which are included in the figure. Differ-
ent symbols represent cases with different cut-off radii.

based on the optical potential parameters and are included in
the figures. We use 2 and 4 fm cut offs for the 28Si(d, pX ) re-
actions and 4, 6, and 8 fm cut offs for 208Pb(d, pX ) reactions.
The line with circle, square, diamond, and plus points repre-
sents the cases with 2, 4, 6, and 8 fm cutvoffs, respectively.
This figure demonstrates an upward trend as the incident
kinetic energy increases. With increasing kinetic energy, the
relative deviations become more considerable, ranging from a
few percent to as much as 25% in the most extreme scenario.
Moreover, the relative deviations still remain moderate for low
incident energy near or below the Coulomb barrier, where
the strong Coulomb force prevents the wave function from
penetrating the interior region. Therefore, setting these wave
functions to zero would not affect the calculation of the NEB
cross section. Additionally, the figure shows that there is a
decrease in the relative deviations with a 2 fm cut off in panel
(a) and a 4 fm cut-off in panel (b). In other words, surface
approximation with these cut offs is still valid in the NEB
calculation.

Figure 8 illustrates the relative deviation for the 6Li
induced cases mentioned above at different incident en-
ergies. Panels (a) and (b) present the 28Si(6Li, αX ) and
208Pb(6Li, αX ), respectively. We use 2 and 4 fm cut offs
for the 28Si(6Li, αX ) reactions and 4, 6, and 10 fm cut offs
for 208Pb(6Li, αX ) reactions. The lines with circle, square,
diamond, and star points represent the cases with 2, 4, 6,
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FIG. 8. Relative deviation of integrated NEB cross section for
(a) 28Si(6Li, αX ) and (b) 208Pb(6Li, αX ). Cut-off radii are selected
according to the potential parameters, which are included in the
figure. Different symbols represent cases with different cut-off radii.

and 10 fm cut offs, respectively. In Fig. 8(a), we can observe
a decreasing trend in the relative deviation. Specifically, as
the kinetic energy increases, the projectile follows a classical
trajectory, and a strong absorption effect of the 6Li + 28Si
interaction occurs, both of which are key assumptions in semi-
classical approaches. Figures 8(a) and 8(b) both demonstrate
that the overall relative deviations of the cross section are less
than 5%, which is within the typical experimental uncertainty,
confirming the validity of surface approximation in these sys-
tems. The comparison between Figs. 7 and 8 reveals that,
in the considered circumstances, the surface approximation
for (d, p) reactions is not as applicable as it is for (6Li, αX )
reactions. This is evidenced by the deviation values in Fig. 7
being 20% higher than those in Fig. 8.

To further investigate the differences caused by 6Li and
deuteron-induced breakup reactions, we reintroduce the an-
gular dependence of the incoming scattering wave function
in order to make a direct comparison with the semiclassical
trajectory picture. The expansion can be written as

χ (+)
a (r) =

∑
l

il (2l + 1)
ul (r)

kr
Pl (cos θ ), (14)

where the Coulomb phase shift has already been inserted into
the radial function ul .
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FIG. 9. The modulus square of the wave function |χ (+)
a |2 for 6Li + 208Pb elastic scattering at various bombarding energies. The wave

functions are plotted in polar coordinates, with the direction of the incoming projectile being 0◦. The three panels correspond to (a) Ea =
30 MeV, (b) Ea = 60 MeV, and (c) Ea = 100 MeV.

Figure 9 depicts the modulus square of the wave function
|χ (+)

a |2 in the x − z plane for the elastic scattering of the
6Li + 208Pb reaction at three different bombarding energies.
This figure is arranged as a heat map in polar coordinate,
where lighter colors represent a larger probability of find-
ing a particle according to the probability interpretation of
the wave function. At 30 MeV, 6Li is incapable of pene-
trating 208Pb and instead is diffracted before reaching the
target. A clearly defined classical trajectory becomes appar-
ent in Figs. 9(b) and 9(c), because as the scattering angle
decreases, the peak of probability density forms a straight
line. Additionally, Figs. 9(b) and 9(c) demonstrate that the
probability of detecting a particle at forward region is ex-
ceptionally low because there are no bright points in the
forward region. This lack of probability in the forward region
demonstrates the strong absorption effect of the 6Li + 208Pb
interaction, in which low angular momentum components
are fully fused into the target and do not contribute to the
NEB cross section. These results affirm the validity of in-
troducing radial cut offs at high incident energies in the IAV
framework.

As a comparison, the wave function for the elastic scatter-
ing of d + 208Pb is depicted in Fig. 10. Unlike the previous

case, there is a strong interference in the forward angle in all
the panels of Fig. 10 showing strong wave-like characteristics.
This strong distortion of the scattering wave functions lacks a
correspondence to the classical trajectory picture, and thus the
surface approximation fails. Besides, there is no evidence of a
strong absorption effect of the d + 208Pb interaction, because
there are many light points in the forward angle.

Comparing wave functions of these reactions makes it
straightforward to establish the validity of surface approxima-
tion based on whether the incoming channel elastic scattering
process has a clear correspondence to a classical trajectory.

IV. CONCLUSION

We present a study on the nonelastic breakup reactions
induced by weakly bound nuclei with a fully quantum-
mechanical model from Ichimura, Austern, and Vincent.
Corresponding to the classical picture of trajectory in reaction
processes, we introduce a radial cut off to investigate the
validity of the surface approximation on a fully quantum-
mechanical basis. With a proper selection of the cut-off radius,
we apply this surface approximation to the (6Li, αX ) and
(d, pX ) reactions.

FIG. 10. The modulus square of the wave function |χ (+)
a |2 for d + 208Pb elastic scattering at various bombarding energies. The wave

functions are plotted in polar coordinates with the direction of the incoming projectile being 0◦. The three panels correspond to (a) Ea = 8 MeV,
(b) Ea = 30 MeV, and (c) Ea = 70 MeV.
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We observed that the approximated cross sections com-
puted with cut offs for the (6Li, αX ) reactions exhibit good
overall agreement with the accurate calculations. These results
indicate that NEB cross section is insensitive to the inner
wave function, and the semiclassical picture is valid. For
(d, pX ) reactions, a non-negligible loss of cross sections was
observed after the cut off, suggesting a strong dependence
on the inner wave functions at low energies in the IAV
framework. Setting the inner wave function to zero in 6Li
induced reactions has little effect on the cross section due to
a strong absorption of small angular momentum components
in the entrance channel. However, in the case of deuteron
induced reactions, the distortion caused by the nuclear and
the Coulomb forces does not correspond to a semiclassical
trajectory picture. Consequently, there is a relatively stronger

dependence on the inner scattering wave function in the IAV
framework.

However, these conclusions are based on a very limited
set of systems. Further studies involving higher incident en-
ergies and more targets are called for. We plan to optimize
our computer code so that we can conduct calculations for
reactions involving heavier targets and higher energy, which
are currently beyond our computing capability.
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