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Abstract In 1985, Hussein and McVoy [Nuc. Phys. A445
(1985) 124] elucidated a formula for the evaluation of the
nonelastic breakup (“stripping”) contribution in inclusive
breakup reactions. The formula, based on the spectator core
model, acquires a particularly simple and appealing form in
the eikonal limit, to the extent that it has become the standard
procedure to analyze single-nucleon knockout reactions at
intermediate energies. In this contribution, a critical assess-
ment of this formula is presented and its connection with
other, noneikonal expressions discussed. Some calculations
comparing the different formulae are also presented for the
one-nucleon removal of 14O+9Be reaction at several incident
energies.

1 Introduction

Breakup reactions have been extensively used to extract
nuclear structure information (binding energies, spectro-
scopic factors, electric response to the continuum, etc) and
have also permitted to improve our understanding of the
dynamics of reactions among composite systems. When the
projectile dissociates into two fragments, the process can be
described as an effective three-body problem, which can be
schematically represented as a + A → b + x + A, where
a represents the projectile which eventually dissociates into
b + x . Even in this simplified three-body picture, the theo-
retical description of the process is not straightforward due
to the presence of three particles in the final state.

In some applications, one is interested in the inclusive pro-
cess in which only one of the fragments (say, b) is measured
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experimentally, that we represent schematically as A(a, b)X .
These inclusive cross sections are needed, for example, in the
application of the surrogate method [1] and in spectroscopic
studies by means of intermediate-energy knockout reactions
[2–4].

The evaluation of inclusive breakup reactions poses a chal-
lenging theoretical problem because many processes can in
principle contribute to the b singles cross section. When the
two fragments b and x “survive” and the target remains in
its ground state, the process is referred to as elastic breakup
(denoted EBU hereafter), also called diffraction dissociation.

The remaining part of the inclusive breakup cross sec-
tion, that we denote globally as nonelastic breakup (NEB),
includes those processes in which the x particle interacts
nonelastically with the target nucleus. This involves, for
example, the transfer of x to a bound state of the residual
system B = A + x , the fusion of x forming a compound
nucleus (incomplete fusion) or simply the target excitation
by x . If x is a composite system, it also includes any pro-
cess in which the latter is broken or excited in any way. The
explicit evaluation of all these processes is not possible in
general so several authors proposed closed-form formulae
which avoid the sum over the final states. Interestingly, all
these formulae display a common structure, given by

d2σ

dEbd�b

∣
∣
∣
∣
NEB

= − 2

h̄va
ρb(Eb)〈ϕx |Wx |ϕx 〉, (1)

where ρb(Eb) = kbμb/[(2π)3h̄2] is the density of states
(with μb the reduced mass of b + B and kb their relative
wave number), Wx is the imaginary part of the optical poten-
tial Ux , which describes x + A elastic scattering. Expression
(1) offers a intuitively appealing interpretation of nonelastic
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breakup. As particle b is scattered, fragments x and A inter-
act with each other. In the original Hamiltonian, the interac-
tion between x and A will be represented by a real operator
depending on the internal degrees of freedom of the target
nucleus. After application of a Feshbach reduction, this inter-
action is replaced by the complex potential UxA, describing
x + A elastic scattering and whose imaginary part accounts
for nonelastic breakup events. Indeed, the difficulty in this
interpretation is to provide a proper description of the state
|ϕx 〉 (the x-channel wave function hereafter), which should
describe the relative motion of x and A, compatible with the
incoming boundary conditions, and with the fact that frag-
ment b will be finally detected with a given momentum kb.

One of the first of these expressions was due to Hussein
and McVoy [5], given explicitly in the next section. In the
same work, they also derived an approximate expression
obtained by treating the distorted waves appearing in (1)
in the Glauber (also referred to as eikonal) approximation.
Since this approximation is valid at high energies, the HM
formula so obtained is expected to be accurate also at high
energies. In fact, this eikonal formula is the key tool to eval-
uate the NEB part of the inclusive cross section in nucleon
removal knockout reactions used to study spectroscopy of
nucleon hole-states. In these experiments, measured cross
sections are compared with theoretical calculations for EBU
and NEB, with the latter being evaluated with the Glauber
version of the HM formula. These theoretical cross sections
are commonly evaluated assuming single-particle wavefunc-
tions for the removed nucleon and they are later multiplied by
the required spectroscopic factors derived, for example, from
shell-model calculations. Then, the ratio Rs = σ exp/σ theo is
computed. Typically, one obtains Rs < 1, which has been
interpreted as an effect of additional correlations not present
in small-scale shell-model calculations, presumably leading
to a larger fragmentation of single-particle strengths (and a
subsequent reduction of spectroscopic factors). Moreover,
these studies have found a systematic dependence of this
ratio on the separation energy of the removed nucleon, with
Rs becoming smaller and smaller as the separation energy
becomes larger [4]. Some authors have interpreted this result
as an indication of additional correlations (coming from ten-
sor and short-range components of the nucleon-nucleon inter-
action). However, this interpretation has been recently put
into question by other authors, because this trend is appar-
ently not observed in other reactions, such as transfer [6] and
(p, pN ) reactions [7–9].

Clearly, the conclusions strongly rely on the validity of
the formulae used in the evaluation of the inclusive cross
sections. Whereas there is a general consensus on the eval-
uation of the EBU cross sections, with different approaches
leading to consistent results (as, for instance, the distorted-
wave Born approximation (DWBA) [10], the continuum-
discretized coupled-channels (CDCC) method [11] and a

Fig. 1 Relevant coordinates for the three-body models described in the
text

variety of semiclassical approaches [12–15]), the reliability
of the NEB calculations has been more controversial. One
of the criticisms concerns the validity of the Glauber HM
formula at the energies commonly used in these experiments
(several tens of MeV per nucleon).

In this paper, we revisit the HM formula and its Glauber
limit, and discuss its connection with other inclusive breakup
formulae proposed by other authors. We present also prelim-
inary numerical calculations comparing some of these for-
mulae, which show that the Glauber limit of the HM formula
is a reasonable approximation at the energies at which the
nucleon-knockout reactions have been measured.

2 Review of inclusive breakup formulae

2.1 The Hussein–McVoy (HM) formula

One of the first attempts to provide a closed-form formula
for the inclusive breakup cross section was due to Hussein
and McVoy in their seminal 1985 paper [5]. The HM deriva-
tion makes use of the spectator assumption for the detected
fragment b, which means that this fragment does not partici-
pate directly in the breakup, so that the breakup is produced
by any nonelastic scattering of the participant x with the tar-
get. By summing over all x + A states which leave A in an
excited state, they arrived to the following formula for the
double differential cross section for NEB:

d2σ

dEbd�b

∣
∣
∣
∣

HM

NEB
= − 2

h̄va
ρb(Eb)〈ϕHM

x |Wx |ϕHM
x 〉, (2)

where ϕHM
x is defined by the so-called non-orthogonality

overlap, which is given by:

ϕHM
x (rx ) = 〈rx |ϕHM

x 〉 = 〈rxχ(−)
b |χ(+)

a φa〉. (3)

Here, |φa〉 is the projectile ground state, |χ(+)
a 〉 and |χ(−)

b 〉 are
distorted scattering states for the a + A and b + B systems,
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respectively. |rx 〉 is a state with given separation of fragment
and target. The relevant coordinates are shown in Fig. 1.

2.2 The Eikonal Hussein–McVoy formula (EHM)

Hussein and McVoy obtained further insight on their formula
(2) by treating the distorted waves χ

(+)
a (ra) and χ

(−)
b (rb)

in the Glauber (also known as eikonal) approximation.
The Glauber approximation to an elastic-scattering distorted
wave is:

χ
(+)
k (r) = eik·r exp

[

+i
∫ z

−∞
	k

(

z′, b
)

dz′
]

(4)

where the incident momentum k points along the positive
z-axis, and b is the component of r perpendicular to z. The
exponent in the second factor is

	k
(

z′, b
) ≡ − k

2E
U (z, b), (5)

which, when integrated along the entire trajectory, gives the
optical phase shift

2δ(b) =
∫ ∞

−∞
	k

(

z′, b
)

dz′ = 2
∫ ∞

0
	k

(

z′, b
)

dz′, (6)

that is related to the partial-wave optical S-matrix, i.e.,
S(b) = exp[2iδ(b)].

A key step in the HM derivation is the choice of the Ua

potential, distorting the incident wave, which is taken as the
sum of the corresponding fragment-target potentials:

Ua = UbA +UxA. (7)

As we shall see, this is a particularly fortunate choice, which
takes into account breakup effects in the entrance channel.
Usual DWBA approaches would use a distorting potential
depending only on the a − A coordinate, which does not
induce breakup. Indeed, they could get away with this com-
plicated distorting potential because the eikonal approxi-
mations were assumed: the x and b fragments move with
the same average velocity as the projectile and hence their
momenta are given by

kx = (mx/ma) ka, kb = (mb/ma) ka . (8)

With the particular choice (7) and the assumption (8) one
obtains the following result

ϕEHM
x (rx ) =

∫

d3rbχ
(−)∗
b (rb)χ(+)

a (ra)φa(rbx )

= eikx ·rx exp

[

i
∫ zx

−∞
	kx

(

z′, bx
)

dz′
]

×
∫

d3rbeiq·rb SbA (bb) φa (rbx )

(9)

with q = kb − k′
b, the average momentum transferred in

b − A elastic scattering.

The last factor is then conveniently expressed as
∫

d3rbeiq·rb SbA (bb) φa (rbx ) ≡ eiq‖zx φ̃a,b(q, bx ). (10)

Replacing this result into (2) one obtains for the double
differential cross section:

d2σ

dEbd�b

∣
∣
∣
∣

EHM

NEB
= 2

h̄va
ρb(Eb)

Ex

kx

×
∫

d2bx

∣
∣
∣φ̃a,b(q, bx )

∣
∣
∣

2 [

1 − |Sx A(bx )|2
]

. (11)

It should be noticed that the NEB depends only on the asymp-
totic properties, this is, the S matrices, of the interaction of
b and x with the target. There is no sensitivity to the wave-
functions in the interaction region. This is a result of the
eikonal approximation, plus the particular choice of the dis-
torting interaction, which includes the imaginary potential
WxA which ultimately generates the NEB.

In many applications, one is interested in the total yield of
fragment b, which is obtained upon integration of the previ-
ous formula over the angular and energy variables, resulting
in:

σEHM
NEB = 2

va
(2π)3 Ex

h̄kx

∫

d3rbd3rx |φa (rbx )|2

× |SbA(bb)|2
[

1 − |Sx A (bx )|2
]

. (12)

This equation has an appealing and intuitive form: the
integrand contains the product of the probabilities for the
core being elastically scattered by the target, |SbA(bb)|2,
times the probability of the valence particle being absorbed,
(1 − |Sx A(bx )|)2. These probabilities are weighted by the
projectile wave function squared, and integrated over all pos-
sible impact parameters. Because of the Glauber approxima-
tion, Eq. (12) is expected to be accurate at high energies
(above ∼100 MeV per nucleon). In fact, this formula has
been extensively employed in the analysis of intermediate-
energy knockout reactions (see e.g. [2–4] and references
therein) mostly aimed at obtaining spectroscopic informa-
tion of nucleon hole states.

2.3 The three-body (3B) model of Austern et al.

In [11], Austern and collaborators derived a three-body for-
mula for the inclusive breakup cross section using as start-
ing point the post-form representation of the exact transition
amplitude

d2σ

d�bEb
= 2π

h̄va
ρ(Eb)

∑

c

|〈χ(−)
b �

c,(−)
x A |Vpost|�(+)〉|2

× δ(E − Eb − Ec), (13)
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where Vpost ≡ Vbx +UbA −UbB is the post-form transition
operator, �(+) is the system wavefunction with the incident
wave in the a + A channel, and �

c,(−)
x A are the eigenstates of

the x + A system, with c = 0 denoting the x and A ground
states. Thus, for c = 0 this expression gives the EBU part,
whereas the terms c �= 0 give the NEB contribution.

In this model, excitations of the target are not explicitly
considered (although they are effectively taken into account
by means of the optical potentials UxA and UbA). Thus, the
total wavefunction is given by

|�(+)〉 ≈ |�3B(+)φ0
A〉, (14)

where |φ0
A〉 is the target ground-state and |�3B(+)〉 is the

solution of the three-body equation:

[T̂aA + T̂bx + Vbx +UbA +UxA − E]|�3B(+)〉 = 0. (15)

Using the Feshbach projection formalism and the optical
model reduction they obtain a closed-form expression for the
inclusive breakup cross section. The latter can be further split
into its EBU and NEB components [16]. The EBU is given
by

d2σ

dEbd�b

∣
∣
∣
∣

3B

EBU
= 2π

h̄va
ρ(Eb)

∫

d�x ρ(Ex )

×
∣
∣
∣

〈

χ
(−)
b χ(−)

x (kx )
∣
∣Vpost

∣
∣�3B(+)

〉∣
∣
∣

2
(16)

where ρ(Ex ) is the density of states of particle x , whereas
the NEB part is given by.

d2σ

dEbd�b

∣
∣
∣
∣

3B

NEB
= − 2

h̄va
ρb(Eb)〈ϕ3B

x |Wx |ϕ3B
x 〉. (17)

The three-body x-channel wavefunction ϕ3B
x (rx ) is obtained

by solving the inhomogeneous equation

(E+
x − Kx −Ux )ϕ

3B
x (rx ) = 〈rxχ(−)

b |Vpost|�3B(+)〉 (18)

where Ex = E − Eb. This equation can also be written in
integral form as

ϕ3B
x (rx ) = G(+)

x 〈rx χ
(−)
b |Vpost|�3B(+)〉

=
∫

d3r′
x 〈rx |G(+)

x |r′
x 〉〈r′

x χ
(−)
b |Vpost|�3B(+)〉

(19)

where G(+)
x = (E+

x − Kx −Ux − iε)−1 is the optical model
Green’s function of particle x .

Austern et al. derived also an interesting alternative
expression for ϕ3B

x (rx ), namely,

ϕ3B
x (rx ) = 〈rxχ(−)

b |�3B(+)〉. (20)

It is worth noting that the formulae (20) and (19) are
formally equivalent and, as such, they must provide iden-
tical results. Although (20) may seem simpler, in practice, it
requires that the three-body wavefunction�3B(+) be accurate
in the full configuration space, since there is no natural cutoff
in the integration variable rb. By contrast, in Eqs. (18) and
(19), the presence of the Vpost operator will tend to empha-
size small b − x separations and hence one requires only an
approximate three-body wavefunction accurate within that
range. This can be achieved, for instance, expanding �3B(+)

in terms of b − x eigenstates, as done in the CDCC method
[11], or in terms of Weinberg states [17]. The implementa-
tion of the method with CDCC wavefunctions is numerically
challenging and the first calculation of this kind was only
recently reported [18].

2.4 The Ichimura, Austern, Vincent (IAV) formula

Ichimura, Austern and Vincent [19] proposed a simpler
DWBA version of the 3B formula above. In DWBA, the exact
wavefunction �(+) is approximated by the factorized form:

|�(+)〉 ≈ |χ(+)
a φaφ

0
A〉. (21)

With this approximation, the NEB component of the b singles
cross section becomes

d2σ

dEbd�b

∣
∣
∣
∣

IAV,post

NEB
= − 2

h̄va
ρb(Eb)〈ϕpost

x |Wx |ϕpost
x 〉, (22)

that is formally identical to (17) but with the x-channel wave-
function given now by

ϕ
post
x (rx ) = G(+)

x 〈rx χ
(−)
b |Vpost|χ(+)

a φa〉. (23)

The IAV model has been recently revisited by several
groups [20–22] and its accuracy assessed against experimen-
tal data with considerable success [23,24].

2.5 The Udagawa, Tamura (UT) formula

Udagawa and Tamura [25] derived a formula similar to that
of IAV, but making use of the prior form DWBA. Their final
result can be again expressed in the form (1),

d2σ

dEbd�b

∣
∣
∣
∣

UT

NEB
= − 2

h̄vi
ρb(Eb)〈ϕprior

x |Wx |ϕprior
x 〉, (24)

where ϕ
prior
x is the solution of a x − A inhomogeneous equa-

tion similar to Eq. (23) but replacing in the source term the
post-form transition operator, Vpost, by its prior form coun-
terpart, Vprior ≡ UxA +UbA −Ua , i.e.:

(E+
x − Kx −Ux )ϕ

prior
x (rx ) = 〈rx χ

(−)
b |Vprior|χ(+)

a φa〉.
(25)
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3 Relation among theories

In this section we discuss the connection between the for-
malisms outlined in the previous section, with emphasis in
the HM formulae. Some of these relations have already been
discussed in previous works, most notably in the compre-
hensive work of Ichimura [26]. We focus here on the HM
formulae (2) and (12) due their relevance in the analysis and
interpretation of knockout studies.

The HM formula (2) can be readily obtained starting
from Austern’s identity (20), and making the replacement
|�3B(+)〉 ≈ |χ(+)

a φa〉. It is also enlightening to see the con-
nection of the HM formula (2) with the IAV model. For that,
one needs to transform first the IAV formula, Eq. (22) into
its prior form. This can be done using the following relation
due to Li, Udagawa and Tamura [27]:

ϕ
post
x (rx ) = ϕ

prior
x (rx ) + ϕHM

x (rx ). (26)

Replacing (26) into Eq. (22) one gets

d2σ

dEbd�b

∣
∣
∣
∣

IAV,prior

NEB
= d2σ

dEbd�b

∣
∣
∣
∣

UT

NEB
+ d2σ

dEbd�b

∣
∣
∣
∣

HM

NEB

+ d2σ

dEbd�b

∣
∣
∣
∣

IN

NEB
, (27)

with the interference (IN) term

d2σ

dEbd�b

∣
∣
∣
∣

IN

NEB
= − 4

h̄va
ρb(Eb)Re〈ϕprior

x |WxA|ϕHM
x 〉. (28)

Equation (27) represents the post-prior equivalence of the
NEB cross sections in the IAV model, with the RHS cor-
responding to the prior-form expression of this model. The
first term is just the NEB formula proposed by Udagawa and
Tamura [25], which is formally analogous to the IAV post-
form formula (22), but with the x-channel wave function
given by ϕ

prior
x (rx ). The second term in (27) is the HM for-

mula of Eq. (2) and the last term arises due the interference
between the UT and HM terms.

The HM formula [Eqs. (2) and (3)], is then recovered
from (27) by neglecting altogether the UT term. This result
suggests that this HM formula is an incomplete NEB theory,
since the UT term can be very large, or even dominant [28]
1.

The situation for the eikonal HM formula, Eq. (12), is
qualitatively different. In this case, we cannot start from the
DWBA formula (27), since the latter assumes that the auxil-
iary potential potential Ua is a function of the a − A relative
coordinate. This is not the case of the HM choice, Eq. (7). If

1 This conclusion was in fact shared by M. Hussein himself who, at least
in recent years, was aware of the incompleteness of the HM formula
[29].

Ua is allowed to be a function of both ra and rbx coordinates
(26) becomes:

ϕ
post
x = Gx 〈rx χ

(−)
b |Vprior|ψ3B(+)

xb 〉 + 〈rxχ(−)
b |ψ3B(+)

xb 〉.
(29)

But, for the HM choice of the Ua potential, Eq. (7), Vprior

vanishes identically, and one recovers Austern’s formula,
Eq. (20). This shows that the EHM approximation (12) incor-
porates three-body effects which go beyond its non-eikonal
form (2). In fact, Eq. (12) represents the Glauber limit of the
three-body formula by Austern al.. In this regard, one may
expect the eikonal HM formula to be more accurate than
its original noneikonal counterpart, whenever the Glauber
approximation is justified (i.e., at high energies).

4 Application to nucleon knockout from 14O

In this section, we present some preliminary numerical
results comparing the HM, EHM and IAV formulae. A more
systematic study, including more detailed observables, such
as momentum distributions, is in progress and will be pre-
sented elsewhere.

4.1 Practical considerations

Some remarks on the numerical implementation of the differ-
ent models are in order. The post-form IAV formula faces the
problem of the marginal convergence of the integrals appear-
ing in the source term of Eq. (23), due to the oscillatory char-
acter of the functions appearing in the initial and final states.
To overcome this problem, several regularization procedures
have been used in the literature. Huby and Mines [30] and
Vincent [31] multiply the source term by an exponential con-
vergence factor, that damps the contribution of the integral at
large distances. Vincent and Fortune [32] use integration in
the complex plane to transform the oscillatory functions into
decaying exponentials. One may also replace the distorted
waves χ

(−)
b (rb) by wave packets constructed by averaging

these distorted waves over finite energy intervals [21,28].
The resulting averaged functions become square-integrable
and the source term of Eq. (23) vanishes at large distances.

Notice that this problem does not arise in the prior form
version of this formula because, in this case, the transition
operator (Vprior) makes the source term short-ranged. In [28],
a numerical comparison between the post and prior IAV for-
mulae was performed for the 58Ni(d,p)X reaction and they
were found to be yield almost identical results, provided a
regularization procedure was applied to the post formula.

4.2 Numerical results

For these test calculations we consider the one-neutron and
one-proton removal processes taking place in the 14O+9Be
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reaction at two different incident energies, namely, 53 MeV/u
and 80 MeV/u. Experimental data for this reaction were
reported in Ref. [33] and analyzed in terms of the eikonal
model as well as the semiclassical “transfer the continuum”
method of Bonaccorso and Brink [34,35], which provides
an alternative to the eikonal method for the case of neutron
removal.

In the calculations presented here, we focus on the NEB
part of the cross section. We compare the DWBA IAV
[Eq. (22)], the HM [Eq. (2)] and the Eikonal HM formu-
lae [Eq. (12)]. Owing to the aforementioned convergence
issues, the calculations with the IAV method were performed
using its prior form formula. Intrinsic spins are ignored for
simplicity. For a meaningful comparison, the same structure
inputs and optical potentials are considered in all these cal-
culations. In particular, the wavefunction of the removed
nucleon is generated with a Woods-Saxon potential with
parameters R0 = 3.29 fm, a = 0.67 fm and the depth
adjusted to reproduce the proton (Sp = 4.6 MeV) or neu-
tron (Sn = 23.2 MeV) separation energy, as appropri-
ate. We used energy-independent neutron-target and core-
target potentials derived from the tρ and tρρ approximation,
respectively, assuming for the nucleon-nucleon t-matrices the
parametrization of [36] with nucleon-nucleon cross sections
from [37] and imaginary-to-real ratios from [38] and densi-
ties extracted from Hartree-Fock calculations with the SkX
interaction [39]. For the IAV and HM calculations, the poten-
tial between projectile and target is also needed. This poten-
tial has been computed via a folding of the neutron-target and
core-target potentials with the square of the wave-function
between neutron and core in the projectile. For the EHM cal-
culation, the optical limit of the Glauber approximation was
used to derive the required S-matrices from these potentials.

The results of these calculations are presented in Fig. 2,
in the form of bar diagrams. The upper and bottom panels
correspond to the one-proton and one-neutron removal reac-
tions. For the neutron removal case, we find that the three
methods give close results. This suggests that the nonorthog-
onality term, which is absent in the HM calculation, is small
in the case of removal of a tightly bound nucleon. For the
proton removal, the HM result tends to overestimate the IAV
result. This indicates that, at lest in this case, the HM and
nonorthogonality terms interfere destructively [c.f. last term
in Eq. (27)]. Remarkably, the Glauber version of the HM
formula is in better agreement with the IAV result than the
original (i.e. non-eikonal) HM formula. As discussed in the
previous section, this result can be interpreted recognizing
that the EHM can be regarded as an approximation to the
full three-body IAV theory and, as such, includes effectively
contributions from the three terms in Eq. (27).

Two main conclusions can be drawn from this prelim-
inary analysis. First, the non-eikonal HM formula provides
an accurate approximation to the more elaborate IAV formula
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Fig. 2 Integrated nonelastic breakup cross sections for the
9Be(14O,13N) (top) and 9Be(14O,13O) (bottom) reactions at 80 MeV/u
and 53 MeV/u computed with the IAV, HM and EHM formulae

for deeply bound nucleons, but fails for more weakly bound
nucleons. Second, the EHM formula represents a very good
approximation to the IAV formula both for well bound and
weakly bound nucleons and for energies as low as 50 MeV/u.
This result seems to add support to the use of the EHM for-
mula in the analysis of knockout reactions.

We note that some other approximations are implicit in the
derivation of all discussed formulae, including the IAV one.
For example, all these formulae are based on the spectator
assumption for the core fragment. This means that the lat-
ter simply scatters elastically by the target nucleus, but does
not participate in the nucleon-removal dynamics. For exam-
ple, possible rescattering effects of the struck nucleon are not
taken into account. These rescattering effects, not considered
by any of the presented theories, could modify the cross sec-
tion for nucleon removal, whose systematics are currently
under discussion [4]. A recent comprehensive review on the
subject is given in Ref. [40].

5 Summary and conclusions

In this work, we have reexamined the nonelastic breakup
formula devised by Hussein and McVoy (HM) and exten-
sively employed in knockout studies. We have shown that
this formula can be derived from the Ichimura, Austern, Vin-
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cent (IAV) model, recently revisited and applied by several
groups, as well as from the three-body formula of Austern
et al. [11]. We have also shown that, owing to the particular
choice of the auxiliary interaction UaA, the eikonal version
of the HM formula (EHM) incorporates genuine three-body
effects. These effects are also present in the more general
three-body formula of Austern et al., but in a more compli-
cated way.

Preliminary calculations for the one-nucleon removal in
the 14O+9Be reaction show that the EHM formula reproduces
accurately the results of the IAV model. For the removal of
the strongly bound neutron (Sn = 23.2 MeV), the noneikonal
HM formula is also in good agreement with the IAV result.
However, for the one-proton removal (Sp = 4.6 MeV), the
noneikonal HM formula tends to overestimate the IAV result.
It will be interesting to extend these calculations to other sys-
tems and energies to see whether these conclusions remain.
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