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Abst rac t :  The  W K B  approx ima t ion  is used  to derive an  express ion for the  usua l  D W B A  a m p h t u d e  
which generahzes  p r ewous  sermclass~cal approx~matlons.  Comparmons  to cases o f  inelastic 
scat ter ing and  t ransfer  reac t ion  inc luding  recod are g~ven. The  extens ion to the  general  
coupled-channel  p rob lem is briefly discussed. 

1. Introduction 

The sem~classlcal description forms a convenient basis for a discussion of reactions 
between heavy nuclei. In this description the amphtudes on the different channels are 
solutions of time dependent first-order coupled equations which display the essential 
multlstep character of the reaction processes and the subtle effects due to the non- 
orthogonahty of the channel wave functions 1). Also one obtains a umfied descrip- 
tion of grazing collisions, deep inelastic reactions and the formation of compound 
nuclei 2). 

The effects of  interference between different classical trajectories leading to the 
same scattering angle can be included by keeping track of the phase shift along the 
trajectories. Similarly the effects of d~ffraction can be incorporated by allowing for 
complex trajectories 3) 

A further improvement of the semlclasslcal description can be obtained by using an 
exact partial wave expansion of the full Schrbdlnger equation and solving the coupled 
radial equations m a WKB approxlmaUon. One is then led to a formulation in terms 
of coupled first-order equations in the relative distance which are very similar to the 
coupled equations in time mentioned above. This semiquantal description 4), which 
includes d~ffractlon and interference phenomena, still retains the slmphclty of the 
semiclass~cal coupled equations and the simple mechamcal picture they convey of the 
reaction. 

So far, the semlquantal description has been especmlly explored for stmple one and 
two step reactions utihzmg an lmagmary potential to describe the depopulation to 
channels that are not detected. The generahzatlon of  the semiquantal methods using 
WKB wave functions for complex potentials leads to a rather accurate description 
of elastic as well as inelastic scattering 3- 7). 
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In the present paper we shall explore the accuracy of this method in describing 
first-order transfer processes mcludang recoil. In this context we introduce a con- 
vement method for the calculatmn of the WKB partial wave matrix elements which 
are generalizations of the orbital integrals in the semiquantal description. 

2. One-particle transfer in DWBA 

We consider the reaction A(a, b)B where a = b + 1 and B = A + 1. Denoting the 
entrance channel by 0~ and the exit channel by fl, the transition amplitude in the 
d~storted wave Born approximation is given by 

r,, = f f d,,bX';'*(k,, ,.). (2.1) 
The vectors r~ = raA and rp = rbB are the relative c m. coordinates in the entrance 
and exit channels respectively, r ~  is the coordinate of  the transferred particle relative 
to the core b and rbA iS the posmon of b with respect to A. The asymptotic momenta  
m the exit and entrance channels are given by hkp and hk~ respectively. 

The two-dimensional form factor may be expanded as 

f ( r lb ,  rbA) = ~ (/A MA JM[Ia Ma)(Ib Mb J'M'[Ia M~)(2/zJ'M'lJM)fxu(r lb, rbA), (2.2) 
JJ'~. 

where I,M, mdlcate the spm and magnetic quantum numbers of  the different nuclei 
revolved in the reaction, 2 as the transferred orbital angular momentum and f~p is a 
tensor of  rank 2, given m the post representation by 

22+  1 
f~,(r lb,  YbA) = Z ( 2 1 t J ' M ' I J M ) -  

ram, 2J' + 1 

f ~B(A)./t ' x d(1 v, su  , ' I A ,  (1)Eulb(rlb)--(Ulb)]¢~,!~'(r~b, ~ ) .  (2.3) 

The single particle wave functions cBCA) and ¢ ~ )  describe the motion of the trans- 
ferred particle around the core A in the exit channel and around the core b in entrance 
channel respectively, (1 being the spin coordinate. The interaction in (2.3) is the differ- 
ence between the single-partmle potential Ulb binding the particle to the core b and 
its expectation value in the exit channel as defined in ref. s). 

In order to evaluate (2 1) we expand the d~storted waves in terms of partial waves 
as follows: 

Zt-)*(k, r) = Z(+)( -k ,  r) = 4~ Z i - '  e'("+~')zt(k, r)Ylm(~)Yl*(~ ). (2.4) 
k l  ~ lm 

We have divided the total phase shifts into a nuclear part  3~ and a Coulomb part  t h 
given by 

*I = a rgF( l+  1 +it/), (2.5) 
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where r/ = Z1Z2e2/hv as the Coulomb parameter. The radml wave functmns are 
regular at the ongm and have the asymptotic behavtour (r --* oo) 

zl(k, r) = sin ( k r -  ½n -  rl In (2kr) + ai + 61). (2.6) 

Note that the ;~t are real ff the optical potentml has no tmagmary part. 
Subsmutmg (2.4) and (2.2) into (2 1) the evaluatton of  Tae is reduced to the calcu- 

lation of the mamx element 

,,e = fd,efd,   xl"(k'' r.) yl mo(  )f2#(rlb, (2.7) 
r#  r e 

In order to explolt the locahzatmn of the form factor (2.3) one should measure the 
coordinate of the transferred parttcle from a point fl on the line connecting the cores 
b and A which hes at the surface of nucleus b. The geomemcal relation between tl~s 
vector, rxp, and the vartous other vectors is shown m fig. 1. One finds, for instance, 

rp = sBr ~ -  tprlp, (2.8) 
where 

sB = ma(mB-- flmt)/mB(mb +tirol), (2.9) 

tp = m~ (m a q- mA)/(m b -t- ~m~)mB (2.10) 

Using r~p as an mtegrahon variable instead of r~b gives rtse to a Jacobmn 

J = (mB/mn--flmx) 3. (2 11) 

1 f 0 )  

. . . .  

YbA ~rbA A 

F i g  1 T h e  g e o m e t r i c a l  r e l a t i o n  b e t w e e n  the  v a r i o u s  vec to r s  m the  D W B A  m a t r i x  e lement .  T h e  p o i n t  
is  de f ined  to  h e  o n  rb^  a t  a d i s t a n c e  flrbA f r o m  A 

Next we mtroduce an intrinsic coordinate system with the 3-axis along r~ and such 
that the transferred particle hes in the (1, 3) plane with a positive 1-component. 
We thus find 

f~u(rib ' rba) Z '~ . . . . .  , r ,  II r~, re), (2.12) = D~,,(rp, O, ~)Ja~' trl~, 

e. t ' lntr  where the expresslon i o r y ~  is formally the same as (2.3) except that the azimuthal 
angles m both smgle-parttcle wave functions are zero and the polar angles are measured 



102 S LANDOWNE et aL 

from the vector r~. Thus f~tr depends only on the shape of the triangle m fig. 1 as 
specified by the longitudinal component (rlp)a = r~la and transverse component 
(rlp)l = r~ of rip and on the modulus ofr~. The Eulerlan angles 0 and ~0 are the polar 
coordinates of r~ while ~k specifies the last rotation bringing the (1, 3) plane into the 
plane of fig 1. 

Similarly we find 
Yt*m,(~P) = E --,.,ma','~,D'"* [,n O, ~)Yffm¢(AO, =), (2.13) 

nZfl' 

where AO is the (small) angle between rp and r,, i.e. 

sin AO = ta r~/rp. (2.14) 

Inserting (2.12) and (2.13) in (2.7) we can perform the integration over the angles 
~o, 0 and ~k to find 

_ / - -  

4= m l m ' | / 2 1 ~ + l I  , tp, = -  (2p/~ , p a ) [ / ~  p~ (2.15) 
21 a + 1 

with 

fo ~ ± 3_ II lp,= 2= r2dr. ( r ldr idr lp  z'"(kp'rp) X"(k"r=) Fp.(r] l , r} ,r , ) ,  (2.16) 
d,~z > o r# r. 

where 
tp.(r~ I ,  r~, r.) = J ~ (2#'l.O[Ip#')Yi,_¢(dO, o)j~¢~ . . . .  t,./r~p,ii r~, r.) (2.17) 

Iz" 

The length of ra can be obtained in terms of r., rI / and r~ by eq. (2 8) The terms ruth 
#' < 0 can be obtained from the terms ruth/~' > 0 by the symmetry relation 

f~,t, t ~+~+¢r,ntr (2.18) 
/~' ~ ~ k - - ]  J 2 , - - u ' ~  

where 7z is the total panty change in the reactlon Thxs leads to the selection rule 
l .+lp+= = even whde the/z '  = 0 term has the selection rule I .+ / p + 2  = even. 

In order to evaluate (2.16) numencally we perform a Taylor expansmn of the exit 
channel wave function about the point sara; that is, 

Zt,(kt~ , rp) = Z )~};)(kp. sa r~) (rp - s  B r , f .  (2.19) 
v ~T 

where the superscnpt (v) denotes the vth derivative with respect to rp We can then 
write the integral (2.16) in the form 

f- ~ v v Ip~ dry{ 2 )~I;)(kB, sa r~)r~ Fp~(r~)})fi.(k,, r~), (2.20) 
, ,10 v 

where 

v! JrlL>O r~ \ r~ - 
(2.21) 

For further detads we refer to ref s). 
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3. The WKB approximation 

3 1 WAVE FUNCTIONS 

In calculating the matrix elements like (2.20) well below the Coulomb barrier in 
both entrance and exit channels, one can approximate the regular wave funcUons Xl 
by the WKB solution 

~ / k / ~  sin , r > ro (3.1a) 

= 

(f" ) ½x/kite(r) exp K(r')dr'  , r < r o . (3.1b) 
x ~  PO / 

where the local wave number is given by 

~(r) = k i l l  - Veff(r)/E, (3.2) 
whtle 

to(r) = kx/Veff(r)/E-- 1. (3.3) 

The asymptotic wave number  k is related to the c.m. energy E by the relation E = 
h2kE/2m where m Is the reduced mass. The effective potential is 

V, ff(r) - h2(l + ½)2 + U ( r ) -  iW(r), (3.4) 
2mr 2 

where U - i W  is the complex optical potential. 
For  real potentials there are usually three turning points r o satisfying the relation 

 (ro) = 0.  ( 3 . 5 )  

Well below the barrier only the real, outermost turning point is to be used in (3.1). 
When an absorptive potential t W is introduced this outermost turning point is shifted 
into the lower half of  the complex r-plane, but the approximation (3,1) is stdl vahd 4) 
provided one defines tile square roots in (3.2) and (3.3) to have positive imaginary 
and positive real parts respectively. The point on the real axis at which one should 
sw~tch from the sine function to the exponential function ~s not clearly defined by 
(3 1). However for r ~ Re ro, of  the two exponential terms m the sine function (3.1 a), 
one comc~des wath (3. lb)  while the other is exponentially small; actually smaller the 
further the turning point is away from the real axis. 

One may utd~ze the above considerations on the WKB solutions for reactions with 
energies above the Coulomb barrier. In tbas case one also finds three turning points. 
Provided W = 0, one of them (the innermost) is real, while the other two are com- 
plex conjugate to each other and have a real part  close to the radius of  the Coulomb 
barrier By approprmtely choosing the sign of the square root in (3.3) one can write 
three WKB solutions to the wave equation inserting each of these turning points into 
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(3.1). While for the innermost turning point (3.1) can be used &rectly for all values of 
r, the solutions associated with the complex turning points have purely incoming or 
outgoing waves inside the Coulomb barrier since x is purely imaginary in this region. 
If  the turmng point m the lower half-plane is used m (3.1), an almost continuous 
WKB solution ~s obtained along the real axis by choosing Im x < 0, while for the 
other complex turning point an equivalent approx~mation ~s obtained ctloosmg 
Im n > 0 Note that these two WKB solutions are complex conjugates (time reverses) 
of each other. 

The solution associated with the real turmng point has standing waves reside the 
Coulomb barrier, whde the solutions corresponding to the turning points lying in the 
upper and lower half-plane have the boundary condmon of outgoing and incoming 
waves respectively m th~s region. Because of the many reactions taking place ms, de 
the barrier the latter boundary condition corresponds to the true physical s~tuatton 

In what follows we will use thas solution associated with the lower turning point as 
the WKB approxamat~on to the distorted waves of sect 2 for general potentials with an 
imaginary part Wactmg as a sink reside the nucleus t. In the surface regton WJs small 
compared to the real potential and we may constder the effect of the maagmary 
potential as a small perturbation. The complex turning point ~s then gtven, m terms 
of the turning point Po for W = 0, by the relation 

r° = r°+tW(r° ) /dVe f t  dr 7°" (3.6) 

It is seen from (3.6) that the turning point m the lower half-plane moves continuously 
into the outermost turning point as the energy ~s decreased from above to below the 
tile Coulomb barrier. The turning point on the ms,de of the Coulomb barrier ~s 
slmdarly continuously connected with the turnmg point m the upper half-plane and 
never coalesces with the turning point on the outside of the barrier. 

In subsect. 3.2 we show how to recast the DWBA matrix element in the WKB 
approximation into a path integral m the complex plane. For  this purpose we need 
the WKB solution (3.1) to the wave equation m the entire complex plane as discussed 
m ref. 7). We wrRe this solution in the form 

m r -{- out r 
½[~kt ( ) ~l ( )] inside ~ (3.7) 

2,(r) = (½¢~eg(r) outside ~ .  

The domain ~ (see fig 2) is defined as the region between the Stokes hnes $2 and S 3 
emerging from the outer turning point. The Stokes hnes are formed by the points r 
satisfying the relation 

( ) Re r' dr '  = 0. 3.8 
¢ r O 

t The WKB solution assocmted with the upper turning point, being the complex conjugate of  
thts solutmn, corresponds to the s~tuat~on where W acts as a source 
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Fig 2 The analytic continuation of ~p'~ [cf eq. (3 9)] On the first sheet (a), above the cut 
m&cated by the wavy line, g ,~* represents an mcomang wave for large values ofr .  As ~0 ~" is continued 
antlclockwlse around re it becomes exponentially increasing along Stokes line S,, decreasing along 
Stokes llne S~ and increasing along Stokes line Sz. Below the cut lrt region fl~ the contlrtuatlon 
of ~p~" ~s the outgoing wave ~po,t gtven by (3.10) As the anUclockwise contmuatmn proceeds 
through the cut the second sheet is entered. The behavlour under further contmuatmn in the second 
sheet is shown in (b). The values of the function in the thard and fourth Rlernann sheets are 
obtained from those in the first and second sheets, respectively, by an overall change of  sign The 

further contlnuatmn from the fourth sheet antlclockwlse leads rote the first sheet 

T h e r e  are  th ree  such  hnes  e m e r g i n g  f r o m  r o which ,  c lose to  r o, a re  s e p a r a t e d  120 ° 

f r o m  each  o t h e r  9). 

T h e  w a v e  f u n c t i o n s  0 ' " ,  0o ,  t a n d  ¢,e~ a re  def ined  by  

~ b l " ( r ) = e  ~'~ e x p - i  h ( r ' ) d r '  , (3.9) 

V 7 0~,t(r  ) = e_~,~ k exp i ~ ( r ' ) d r '  , (3 10) 
" ~ ( r )  L . , o  

[f" 3 Ole,(r ) = k exp  tc( r ' )dr '  , (3 11) 
L. , /  r o  - J  

where 0 ~< arg ~(r)  < ~ ~nd larg ~(~)I < ½~- 
T h e  f u n c t i o n s  (3 9 ) -  (3.11) are  de f ined  on  f o u r  R l e m a n n  sheets.  T w o  o f  these  

s h e e t s , j o i n e d  a l o n g  a cut  m the  r e g m n  9 ,  a re  d lu s t r a t ed  in fig 2. T h e  ana ly t i c  con-  

t m u a t l o n  of~/in an t l c lockwlse  a b o v e  r 0 b e c o m e s  ident ica l  t o  ~k ' 'g  [cf. fig 2(a) ]  and  the  
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further analytic continuation of this function below r0 brmgs it mto pt. If the 
function I+V is further contmued anttclockwise above r0 it goes mto the irregular 
solution + along S, and finally into -$‘” m the region 9 [cf fig. 2b] 

3.2. MATRIX ELEMENTS 

We now turn to the evaluation of the matrix element (2.16). The turnmg pomts 
correspondmg to entrance and exit channels are illustrated m fig. 3 together with the 
associated Stokes lines. As a first step we deform the path of mtegratton in (2.16) 
from the real axis to a path P that goes through the two turning points as mdlcated in 
fig. 3. The two integrals (from 0 to co) are equal insofar as the region between the 
two paths does not contain any singularity of the integrand. 

Rg. 3. Tummg points and their assoctated Stokes lmes for entrance and exrt channels. The path P 
IS used to evaluate the DWBA radtal Integral. The path C may be used to evaluate the WKB approxt- 

matton to the radtal integral The wavy lme indicates cuts associated with the turning points. 

The sequence m which the path P goes through the turning points ri and r! IS such 
that it first encounters the pomt whose domain 9 contams the other turning point. 
This prescription 1s unique when the turning points are well separated and close to 
the real axis If the turning pomts are close together or far below the real axts the 
sequence is irrelevant for practical purposes. 

Havmg deformed the path of mtegratlon to P, we now substitute the WKB ap- 
proxrmatlons (3.7) for the entrance and exit channel wave functtons m (2 16). Con- 
sidering the exit channel, we use 

rs z=2 sB r, - ts r\b , (3.12) 

m the argument of &, having neglected terms of the order (tSr/\/r,J2 [cf. ref. “)I. 
Thus we use 

i 

3[$;i(sn ra) exp [rK”(s, r,)r$l +$;)aUt(SB rJ exp C- iK”b rJr\~ll, 
1?1,(r& = inside 9 (3.13) 

311/iF(sB rz) exp CrK”(sri rJr$19 outside 9, 

t The functton $rreg IS gtven by (3 11) wrth a mums stgn m the exponent. 
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where, consistent within the WKB approxamatlon, we have neglected the variation in 
(~#(r#)) -* and (x#(r#)) -~ as functions of  rl#. The quantity 

KIl(r) = t#~b.(r), (3.14a) 

corresponds to the classical longituchnal component of the local momentum of the 
transferred particle whale 

a~ll(r) = itb.xb.(r). (3.14b) 

We also use in eq. (2.17) the expression 

Ys,-,(AO, O) ,~ V 2lb.+ 1Jm(K±rt) ' (3.15) 

R ~  

- -  4r~ 
where 

K ± = tb.(l# +½)/sBr~, (3.16) 

represents the classical perpen&cular component of the local momentum of the trans- 
ferred particle. The result (3.15) comes from the large lb. hmlt and from approximating 
sinAO ~ AO in (2.14) consistent with the approximation (3.12). FmaUy i n  (2.16) we 
set 1/rb. equal to 1~sara. 

Under the above considerations the integral (2.16) is written as 

ib. :~ (2# , laOl l ,  l l , ) ~  1 l { f f  ° out ~," 2 o#/,~ dr~ ~/'# (sa ra)fa¢( - -  r I I, r ±, r~)],.(r~) 

f ,[, /8. ,, + '"(sa r,)fa¢(K II, K ±, r,)~,.(r~) 

fr°a/sa } 
+ J o  dr~k~g(sar~)fa¢(KIl' K±' r')xl'(r~) ' (3.17) 

where 

fz¢(K II, K ±, r~) = 2rcJ f r±dr±drll o,r,l(~ a ,~,),~#lJ 
' | . 1 1 l b ' "  
S B d r l ' L  > 0  

± .L mtr II x J¢(K (s a r~)r 1)f]., (rl# , r~, G). (3.18) 

Outside the turning points, on the real axis, the form factor (3 18) is identical to the 
sermclasslcal form factor ~,s) 

Next we insert the expression (3 7) for the radml wave function in the entrance 
channel Of the resulting seven terms we neglect 

f r°# /sa dr~ ~k~g(sa r~)fa¢(K II, K-L, r~)~k~g(r~). (3.19) 

as both wave functions are exponentially decreasing from the upper hmlt. In the same 
approximation we can neglect the integrals from r~ to oo containing the product 

i n  ~t ff~" ~b,# since we can deform the path of integration to follow the Stokes line S 3 down 
in the fourth quadrant, closing the path at infinity where the form factor vantshes. 
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Along this path, C 2 ,  both functions are exponentially decreasing as indicated m 
fig. 2b. A simdar argument applies to the term containing the product V ~ , "  ~out $~.out where 
the path C x following the Stokes hne S~ in the first quadrant leads to exponentially 
decreasing functions. 

The sum of the remaining four terms can be combined into a loop integral along C 
which circumvents both turning points (of. fig 3) 1 e 

V Ia~ = Z (2f/ ,011aff)  2 / a+ l  _ dr,~,~t(sar~)fau,(_Kii, K ±, r,)~k~,(G) 

V5,+1 

exp (, [U".(r')dr'- f';',(r')dr']) 
I dr, f aa . ( -K  I1, K ±, r,) t-.Jro, , ,o .~ × (3.20) 

d c  

Th~s result was obtained utilizing the properties dlustrated m fig. 2. From eq. (3.20) 
it is seen exphmtly how the DWBA matrix elements are only sensmve to the form 
factors from the complex turning point in the lower half-plane and out along the real 
axis. 

In the apphcatlons we shall use a series expansion of the form factor (3.18) m 
powers of the longitudinal momentum i.e. 

f~te(K II, K ±, r,) = E (tKIl(sn r,)r~ffag'(v, K'L, r,), (3.21) 
,p 

whlch corresponds to the Taylor expansion (2.19). 
For  the case where the turning points are located in the opposite sequence of that 

shown m fig 3 the same expression (3.20) applies provided the loop C starts below 
the cut and ctrcumvents the turning points clockwise 

If  the two turning points are close together one may use either contour wtth essenti- 
ally the same result In th~s case one can expand the phase difference 

f"" f(odr,= A~b = drka(r  ) -  (r), (3.22) 
o ~ 

appearing in (3.20) to first order m the energy difference E(fl)-E(ct), the angular 
momentum difference lp- l , ,  the difference m reduced mass m p - m ,  and the differ- 
ence in optical potentml One finds 

Ac~ = ~ (E(fl)-E(~t))t-(l,-l~)d?(t)+ h ~ [  U~(r(t'))- U,(r(t'))+½(m,-m~)(~(t'))2]dt ' 

) + h m~-mB ~ ml r(t) " v(t)" (3.23) 
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We have here introduced the average positron vector r(t) between the classical motmn 

in entrance and exit channel and the correspondmg velocity v(t) = k(t) The quantity 
qS(t) is the azimuthal angle m the plane of the average orbit measured from its symme- 
try axis The phase (3.23) is identical to the phase appearing m the semiclassical de- 
scription of transfer reactions 1). The quantal reactmn matrix ts tb_us m this hmlt 
ldenhcal to the semlclasslcal reaction amplitude [cf eq. (2 4) m ref. 4)], if we are 
below the barrier For reactions above the barrier the semlclasslcal approximation 
stdl apphes if one lets the time t in the neighborhood of t = 0 become complex such 
that the corresponding r-value encircles the outermost complex turning point 6). 

4. Applications 

In thts section we dlustrate the WKB results g~ven in sect. 3 by calculating the 
angular distribution for elastic and inelastic scattering and transfer reactions m first 

order perturbation theory. 

4 1. TURNING POINTS 

In fig. 4 we show the turning points m the elastic channel for the case 180 + SSNl 

at 60 MeV. The parameters of the optical potential used are g~ven in table 1. They 
were obtained in ref. 10) by fitting the corresponding elastic scattering data. The 
potential ~s typical in that it gives rise to a well defined barrier m the surface region 

and strong absorption m the interior. We also show turning points when the imaginary 
part of the potential is set equal to zero. Thus it can be seen that for partial wave l = 
30 the energy is just below the barrier m the effective potential and all lower partml 

TABLE 1 

Optical parameters used m the calculations 

Reaction V (MeV) /4 / (MeV) ro (fm) a (fm) 

SaNl080, 180') --90 1 42 9 1.220 0.50 
'*8Ca04N, IaC) --70 0 I0.0 1 225 0 65 

waves surmount their respective barriers. For  50 < I < 85 the minimum of the tuner 
potential "pocket" is greater than the c m energy. For l > 85 the effectwe potential 
no longer exhibits a pocket. 

In fig 4 we show the turning points which were calculated solwng the equatton 
/~(ro) = 0 numerically. For  the outermost turning points where the imaginary 
potentml, as is typical for heavy ion reactmns, is small compared to the total real 
potentml, one can calculate r o utlhzmg the linear approximation (3.6). The accuracy 
of this approximation is shown in fig 8. 
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4.2. ELASTIC SCATTERING 

The nuclear reflect]on coefficient v/l is defined m terms of the nuclear elastic phase 
s lu f t  6 t as 

~h = e'2a'  (4 .1)  

T h e  W K B  a p p r o x l m a t l o n  t o  t h e  p h a s e  sh i f t  f o l l ows  f r o m  t h e  a s y m p t o t i c  f o r m  

~, ( r )  = s m  ( k r -  ½7rl- 11 In ( 2 k r )  + #, + 3t), (4 .2)  

o f  t h e  W K B  w a v e  f u n c t i o n  (3.1) .  H e r e  

= t/In ~/r/2 +(1 +½)2 +(/+½)tan-1(rl/(l+½)), (4.3) 

is the WKB Coulomb phase shift, which for large values of l has the same varlatlon 
with l as (2 5) 
The WKB nuclear phase shift can be written 

3, = f r  (r)dr- f (4.4) 

where kc(r ) is the wave number m a pure Coulomb field, r c being the corresponding 
turning point  and R is a point  on the real r-axis outside the range o f  the nuclear 
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potenUal. The second integral m (4.4) can be gwen m closed form whde the first 
integral may be performed on any path from ro to R avoiding the singularities of  

/~(r). One may also use the expression 

e ~ ( r ) d r  = ~ 

O 

where C is a path of the type shown in fig. 3 beginning and ending at R circumventing 

the turning point ro. 
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Fig 5. The magmtude (a) and phase (b) of the nuclear reflecUon coefficients for laOq-SaN1 at 
E~ab = 60 MeV using the optical potential of  table 1 The full dots are the results from in- 
tegrating the Schrodmger equatlon numerically. The open dots are calculated in WKB approxima- 
tion using the expression (4 4) and the outer turning points in the lower half-plane shown in 

fig. 4 (see also fig 8) 
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optical parameters m table 1 The reflection coefficients shown m fig. 5 were used m the cal- 
culations The full drawn curve is the result of  a four parameter  least-square fit to the elastic 

scattering data 1 o) 

Having calculated the WKB phase shifts with (4.4), we display the corresponding 
reflection coefficients in fig. 5 m comparison with exact optical model calculauons 
for the case of ~SO + 5SN~ d~scussed above Stmdar results for other cases have been 
gwen in refs. 5, 6) They show a major Improvement over the correspondmg results 
presented m ref. 4) [cf ibid. case III, fig 4.1 ]. 

It is seen from the turmng pomts m fig 4 that the phase shifts depend only on the 
tml of the optical potential. Since the imaginary potential Is small in the surface region, 
the results shown m fig. 5 are quahtatlvely understood as being due to reflectton off a 
real barrier m the presence of a small amount of absorption. Because of the absorp- 
tion, the turning point for the crmcal partial waves is pushed outwards [cf. eq. (3.6)] 
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to a posmon  in qualitative agreement with what would be inferred f rom the Blair 
quarter point recipe based on a Coulomb trajectoryL 

To assess the importance of the discrepancies between the WKB and exact phase 
shifts we compare the corresponding elastic cross sections in fig. 6. They were calcu- 
lated utlhzmg the scattering amplitude 

f(O) = fR(O)+ ~k ~ (2/+ 1)e'2~"(1-q,)P,(cos 0). (4.6) 

where fR is the Rutherford amplitude. The summation was carried out directly with- 
out using the saddle-point techmque of refs. a, 7). The argreement m fig. 6 can be 
followed by another order of magmtude down before slgmficant differences appear. 

4 3 INELASTIC SCATTERING 

We turn next to two examples of  inelastic scattering. The first is a typical case of 
Coulomb-nuclear Interference in the excitation of a low-lying collective state which 
wdl facilitate comparisons w~th previous semlclasslcal approaches. The second is an 
hypothetical nuclear exc~tatlon of a htgh-lying state for which previous approaches 
would break down. 

We consider first the reaction SSNl(180, 180')SaNl(2+; 1.45 MeV) at 60 MeV 

which was analyzed in DWBA using the optical parameters of table 1 and the collec- 
tive form factor 10) The analysis gives a satisfactory description of the data which 
shows the characterlstac oscillations produced by Coulomb-nuclear interference 11). 

The WKB radial integrals for this case are given by (3 20). Part  of the path of 
integration ~s shown in fig 4. Since the form factor IS known as an analytic function 
on the real r-axis, we simply use it In the complex r-plane in connection with (3 20) 
Because thls reaction is well matched there is no slgnlficant contribution coming 
from between the entrance and exit channel turning points. To check this we perfor- 
med the integral of  (3.20) clockwise as well as antlclockwlse around the turning points 
and found no slgmficant difference. 

The radial integrals (3 20) were used to construct the total transition amplitude 
given by 

T~;,(O) = E t ' ' -  '"(Ip m). - m I I~ O)x/2/p + 1 exp [ l(ai,  + 6,, + a,. + 6,.)]It~. Yt~,,,(O. O) 
1~1~ 

(4.7) 

The correspondmg angular d~stribution is shown in fig. 7 in comparison with the 
DWBA result. Note that  in the WKB calculation we used the WKB nuclear phase 
shifts in (4.7). 

In the present case the semlclass~cal expression for the matrix element obtained by 
inserting (3 23) into (3 20) can be used. The at tempt in ref 4) to use this approxl- 

t Note that the derivative of the nuclear phase shifts with respect to l tends to zero for the 
critical partml waves so that the critical deflection angle becomes equal to the Rutherford value 
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Flg. 7. Angular  distribution for the inelastic scattering of xsO with E l a  b = 60 MeV exciting the 
first 2 + state o f  SaNl The calculations use the optical parameters of table 1 and the collective 
nuclear form factor proportional to the derivative o f  the (complex) nuclear potential. Part  o f  the 
path  o f  integration for the WKB calculation using eq. (3.20) is shown in fig. 4. The entire path  
was rectangular extending out to 25 fro. Both calculations used partial waves up to /max = 100 
This accounts for the unphysical drop at forward angles and the small, high frequency oscillations 
appearing for 0¢ m > 45 °. Both features are absent in the data  analys~s 10) which used I,,a, ~ 400. 

The calculations shown actually fit the available data rather well 

matlon on a slmdar case failed because the wrong turmng point was used when the 
bamer  was exceeded 6). 

Two features make the previous case relatwely simple from a semiclasslcal point 
of  view. It is well matched and the long range quadrupole Coulomb interaction 
insures that Coulomb excitation contributes s~gnlficantly, ff not dominantly, to the 
final cross section. To check the range of  validity of  (3.20) we consider a hypothetical 
reaction SSNl(tSo, tsO')~SNl(0+; 10 MeV) again at 60 MeV m the entrance channel. 
We suppress the Coulomb excitation and use a form factor proportional to  the 
derwatlve of  the real nuclear potentml The entrance and exit channel turning points 
g~ven m fig. 8 show the large mismatch m the present case. Since the exit channel 
turning points are almost outside the range of  the nuclear potentml, the radml integrals 
recewe large contributions from between the turmng points. 
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Fig, 8. Outermost turmng points m the entrance channel (sohd dots) and m the exit channel 
(open dots) for the fictltmus reaction 5SNl(lsO, lsO')SSNl(0+; 10 MoV), The potentzal parameters 
are gwen in table 1. The plus signs result from taking the turmng points of the real potential 
m the entrance channel and including the zmagmary potential as a small perturbation according 

to eq (3.6). 

The W K B  and D W B A  radial integrals for this case are compared  in fig. 9. The 
largest deviation in the magmtude  of  the integrals occurs for partial wave l = 18 and 
is 8 %. In  thas example the correct  sense of  integration in (3.20) is clockwise. The 
results are an order o f  magni tude  too  large if the opposite sense is taken (cf. fig. 9) 

No te  tha t  the radial integrals appear  in the partial wave summat ion  (4.7) mul- 
tiplied by the average reflection coefficmnts 

r/it, t,, = exp [z(Szz +61,,)]. (4.8) 

In  other words,  tile partial reaction amplitudes factorize into amplitudes for  reflection 
depending only on the elastic scattering and transit ion amplitudes dependmg on the 
interaction couphng  initial and final states. I t  is the decreasing amplitude for reflection 
as one goes above the Cou lomb barrier which causes the reaction amplitudes to 
decrease for  the low partial waves, giving rise to tile familiar "surface peakmg"  in 
angular  m o m e n t u m  space. The partial t ransit ion amplitudes, or  radial integrals as 
we have defined them, increase rapidly as the turning points move  into the range of  
nuclear mteract lon and then tend to saturate (see fig. 4). 

In  fig. 9 we also show the partial reaction amplitudes. The discrepancy with the 
D W B A  for  I = 18 increases to 13 % due to the inaccuracy of  the W K B  phase shifts 
Thas shows why the reaction cross sections are more  sensitive to  the elastic optical 
parameters  than  the elastic scattering itself 12). The resulting W K B  angular distri- 
but ion is shown in fig. 10. 
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Fig. 9. Radial matrix elements for the fictitious reaction 5SNI(lsO, laO')SSNl(0+; 10 MeV) at 
El,b = 60 MeV The optical parameters m table 1 were used for the d~storted waves while the 
form factor was taken to be proportional to the derivative of the real nuclear potential. Coulomb 
excitation is not included The sohd dots m (a) are the magnitudes of  the WKB integrals wl~le 
a smooth sohd hne has been drawn through the corresponding DWBA results. In (b) the 
corresponding phases are plotted. The open circles and dashed hnes in (a) result from multiplying 
the WKB and DWBA integrals by the corresponding average reflection coefficients The crossed 

hne shows a few of  the WKB integrals when the wrong sense of lntegratmn ~s used 

4.4. ONE-PARTICLE TRANSFER 

The above examples test the main approximation of using WKB wave functions 
with incoming wave boundary conditions. Previous semlclasslcal calculations of 
transfer reactions ~a) treated recoil approximately and were carried out along the 
real axis using a restricted class of optical potentials. 
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Fig 12 Angular  distributions for the normal  and non-normal  angular momen tum transfers In the 
reaction 4aCa(14N, 1aC)49Sc({-) at Elab = 50 MeV. 

We have studied the reaction 4aCa(14N, 1aC)49Sc(~-; Q = - 1  01 MeV) at 50 
MeV. The optical parameters that were used are given in table 1. These parameters 
do not produce a quantitative fit to the corresponding data t4, is) but have been 
used to compare different DWBA computer codes whlch take recoil into account 
exactly t. The outermost turning points are shown I n  fig. 11. I t  is clear that ttus case is 
very well matched. 

t We found that the imaginary potential was actually too weak to completely remove internal 
reflection. These features can bc seen m the DWBA radial integrals but have httle effect on  the cross 
section 
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The form factors fa~,(v, K ±, r,) appearing m (3.21) were calculated numerically 
along the real axis for use m the DWBA calculanon ~6). A pure lp~ configuratmn 
wave function was used to describe the motion of the proton around x3C while 49Sc 
was described as a 2p~ proton moving around 4SCa. We then parametnzed these 
form factors by functmns of  the type 

A, ' (  v, K ±, G) = Ae-~"/r,  (4.9) 

adjusting the values of A and x by fitting the computed form factor at r = 9 fm and 
r = 10 fm. For  the grazing partml waves the deviations f rom the true form factor at 
r = 8 fm and r = 11 fm were typxcally 5 % and 1% respectwely. 

The comparison of DWBA and WKB cross sections is shown in fig 12 for both 
the normal and the non-normal angular momentum transfer. In th~s case we use the 
exact reflection coefficients (4 8) in the WKB calculation. When the WKB reflection 
coefficients are used the results are shifted to lie approximately 25 % above the 
DWBA curves. 

The calculations shown in fig. 12 have been earned out to second order in the 
Taylor series, that  as vm, . = 2 was used in (2.19) and (3.21). We have also compared 
the DWBA and WKB for Vma , = 0 and the agreement is equally good. The effect of  
the Taylor expansion ~s not very large m the present case. The zeroth-order results 
lie about  25 % below the second-order curves. However, the numencal  calculanons 
clearly show that  the effect of the Taylor expansion of the wave funcnon m (2 19) is 
accurately reproduced by the power series in the local momentum in (3.21). 

5. Coupled equations 

In this section we would hke to point out that the WKB approach can readdy be 
extended to coupled-channel problems. This is easiest to show if we neglect recoil 
and non-or thogonahty effects since then the formalism of ref. 4) may be taken over 
directly. 

Thus we approximate the coupled-channel regular wave functmn in a particular 
channel fl as 

~t~(r) = c~ (r)~b~n(r)+ c~ (r)~Tt(r), (5.0 

where ~/out/m are the WKB approximations to the outgoing and lngoing solutions for 
the uncoupled problem as given by (3.9) and (3.10). Substituting (5.1) m the Schr6- 
dmger equanon and neglecting second denvatwes of c +, hnear equations for c + are 
obtained m the form 

a 4 ( r )  + Z ou,/,. ,°/oo, - = vp,(0g, ,  (0g , ,  ( r ) c , ( 0 .  
dr 

(5.2) 
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The c-  amphtudes are integrated inwards starting with the boundary condmon 

e~-(~) = ~,~, (5.3) 

c¢ being the entrance channel. They are then matched to the c + amplitudes whmh m 
turn are integrated outwards The total scattering amplitude may be constructed 
from the asymptotic values of c + It is clear that outside the various turning points 
the outgoing set of equations is the analytm continuation of the lngolng set Thus the 
matching can be achieved by integrating the mgolng equations around the various 
turning points. The asymptotic values of c + are thus given by 

fc dr Z = 0a o.t (r)Vpr(r)Or '" (r)c r- (r). (5.4) 
? 

These equations have been apphed below the Coulomb bamer  to the problem of 
Coulomb excitation 17) Substituting (5.3) into the nght-hand side of (5.4) leads to 
eq. (3.20). Thus (5.4) is consistent with the first-order solution (3.20). 

While st is clear from (5.2) that the integration path C must go around the various 
turning points, the manner in whmh this ~s to be done is not obvious. To study this 
problem we have considered the second-order solution to the quantum mechanical 
coupled-channel problem. Speciahzmg to three channels ~, fl and ], corresponding to 
entrance, exit and lntermedmte channels respectively and assuming all diagonal 
matrix elements are zero, the second-order contnbntlon to the reactmn amplitude 
involves integrals of the type ~8) 

fo ° > f ; , + ,  , I~ = drz~(r)V#~(r ) ~(r dr h v (r)V~(r  )z~(r ) 

)fodr x,( )v,( ) ( )] ( ) . . . .  

+ r r ~ r  x~r  , 5.5 

where h + refers to the outgoing solutions of the uncoupled equations. 
Assuming that the turning point ro a in the channel fl lies to the left of turmng 

point r~, approximating ;( by (3.7) and h + by 

(i~/I, °ut /~+(r) = (r), for r > ro (5.6) 

I0  ~ ' ( r ) ,  for r < ro, 

the WKB expressmn for Ip may be evaluated for vanous locations of the turning 
point rg. Neglecting terms containing products of  exponentmlly decreasing functions 
as was done m sect. 3 and Utdlzmg the analytic properties summarized in fig 2 one 
finally arrives at the result 

' f c  ° "  . . . . .  Ip = -g~ dr Op (r)Vp,(r)~l,r (r (r )V,=(r )O= ( r ) ,  (5.7) 

if ro ~ lies between the turning points r~ and rg. The path C goes anticlockwise around 
all three turning points. The label C(r) means that the inner Integration follows the 
same path as the outer lntegratmn up to the point r. 
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The  sense o f  in tegra t ion  is the same as tha t  requi red  for  the first o rde r  amph-  

tudes The  case when r~ is be tween r~ and  re # is the  mos t  favored  two step process  

f rom the po in t  o f  wew of  Q-values.  Therefore ,  we expect  tha t  use o f  the  sense defined 

by  the f i rs t -order  t rans i t ion  m a y  app rox ima te  h~gher o rder  t rans i t ions  as well. 

6. Conclusions 

The d~fficultles tha t  were earher  encountered  in using a semiclassical  o r  a W K B  

t r ea tmen t  for  heavy ion  reac t ions  above  the C o u l o m b  bar r i e r  have been solved by  

u td izmg W K B  solut ions  co r re spond ing  to  an incoming  wave b o u n d a r y  condlt lOn 

inside the barr ier .  

We  have shown how to express the  d is tor ted  wave mat r ix  elements in terms of  a 

loop  integral  a r o u n d  the complex  tu rn ing  po in ts  m the lower-ha l f  complex  r-plane.  

This  for rnula t lon  provides  a generahza t ion  o f  the  classical  o rb i ta l  integral  which can  

be also used for  b a d l y  ma tched  reac t ions  where the Q-value is very &fferent  f rom its 

o p t i m u m  value. 

Th rough  the sys temat ic  compar i son  o f  this  me thod  with D W B A  calcula t ions  for  

react ions  above  the C o u l o m b  barr ier ,  we have shown how the cross sections are  

comple te ly  de te rmined  f rom the knowledge  o f  the fo rm factors  and  opt ical  potent ia l s  

In the  n e i g h b o r h o o d  o f  the  complex  t u r m n g  poin ts  close to  the  C o u l o m b  b a m e r  in 

the  lower-ha l f  r -p lane  

The  p a t h  Integral  concept  is expected to  p rov ide  a powerfu l  t echmque  also for  

coup led-channe l  calculat ions.  
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