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Abstract: The WKB approximation 1s used to derive an expression for the usual DWBA amplitude
which generalizes previous semuclassical approximations. Comparisons to cases of inelastic
scattering and transfer reaction including recoil are given. The extension to the general
coupled-channel problem 1s briefly discussed.

1. Introduction

The semiclassical description forms a convenient basis for a discussion of reactions
between heavy nuclei. In this description the amplitudes on the different channels are
solutions of time dependent first-order coupled equations which display the essential
multistep character of the reaction processes and the subtle effects due to the non-
orthogonahty of the channel wave functions '). Also one obtains a unified descrip-
tion of grazing collisions, deep 1nelastic reactions and the formation of compound
nuclei 2).

The effects of interference between different classical trajectories leading to the
same scattering angle can be included by keeping track of the phase shift along the
trajectories. Similarly the effects of diffraction can be incorporated by allowimng for
complex trajectories )

A further improvement of the semiclassical description can be obtained by using an
exact partial wave expansion of the full Schrodinger equation and solving the coupled
radial equations in a WKB approximation. One 1s then led to a formulation 1n terms
of coupled first-order equations in the relative distance which are very similar to the
coupled equations 1n time mentioned above. This semiquantal description ), which
includes diffraction and interference phenomena, still retains the simplicity of the
semiclassical coupled equations and the simple mechanical picture they convey of the
reaction.

So far, the semiquantal description has been especially explored for simple one and
two step reacttons utilizing an imaginary potential to describe the depopulation to
channels that are not detected. The generalization of the semiquantal methods using
WKB wave functions for complex potentials leads to a rather accurate description
of elastic as well as melastic scattering 3~ 7).
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In the present paper we shall explore the accuracy of this method in describing
first-order transfer processes including recoil. In this context we introduce a con-
venient method for the calculation of the WKB partial wave matrix elements which
are generahizations of the orbital integrals in the semiquantal description.

2. One-particle transfer in DWBA

We consider the reaction A(a, b)B where a = b+1 and B = A +1. Denoting the
entrance channel by o and the exit channel by §, the transition amplitude 1n the
distorted wave Born approximation 1s given by

Ty = Jdrafdrlb 25 gy 1) (11 roa )t (Ko 1) @y

The vectors r, = r,, and ry = ryp are the relative ¢ m. coordinates in the entrance
and exit channels respectively, ¥, 1s the coordinate of the transferred particle relative
to the core b and r,, 1s the position of b with respect to A. The asymptotic momenta
m the exit and entrance channels are given by ks and %k, respectively.

The two-dimensional form factor may be expanded as

f(’1ba "bA) =JJZ’A(IAMAJMIIB MB)(IbMbJ'M'fIaMa)(AW'M'IJM)fzu("m, Poa)s (2-2)

where I,M, indicate the spin and magnetic quantum numbers of the different nucler
mnvolved 1n the reaction, A 1s the transferred orbital angular momentum and f;, 1s a
tensor of rank A, given m the post representation by

24+1
2J'+1

f;.,.("w, 'bA) =M;{,('1NJ’MI|JM)

X J‘dCI ¢?§?)*(r1A9 Cl)[Ulb(rlb)_<U1b>]¢3('113’(r1b ’ Cl) (23)

The single particle wave functions ¢® and ¢*® describe the motion of the trans-
ferred particle around the core A 1n the exit channel and around the core b 1n entrance
channel respectively, {; being the spin coordinate. The interaction in (2.3) 1s the differ-
ence between the single-particle potential U, binding the particle to the core b and
1ts expectation value in the exit channel as defined in ref. ®).

In order to evaluate (2 1) we expand the distorted waves in terms of partial waves
as follows:

- AT < .y ertar ~
27 r) = =k r) = X BT, (24)

We have divided the total phase shifts into a nuclear part §, and a Coulomb part o,

given by
oy, = argl'(I+1+in), (2.5)
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where n = Z,Z,e*/hv 1s the Coulomb parameter. The radial wave functions are
regular at the origin and have the asymptotic behaviour (r — )

xi(k, r) = sin (kr —4n—n In (2kr)+ 6,+6)). (2.6)

Note that the x; are real if the optical potential has no imaginary part.
Substituting (2.4) and (2.2) into (2 1) the evaluation of T}, 1s reduced to the calcu-
lation of the matrix element

kg, r k,,r,
gy = Jd"afdi‘lb Xlﬁ( £ ﬂ) Xl“( , ) Yl:mp(?ﬂ)f}.u(rlb’ rhA)Yla,mu(?a ) (2-7)

rp A

In order to exploit the localization of the form factor (2.3) one should measure the
coordinate of the transferred particle from a point § on the hine connecting the cores
b and A which lies at the surface of nucleus b. The geometrical relation between this
vector, r;z, and the various other vectors 1s shown 1n fig. 1. One finds, for instance,

¥p = Spr,—lgtrp, (2.8)

where
sg = my(mg— Pmy)[mg(my+pm,), (2.9)
tg = m,y(m,+my)[(my+ pm; )mg (2.10)

Using r,, as an integration variable instead of r,y, gives rise to a Jacobian

J = (myp/mg—pm,)>. (211)

Fig 1 The geometrical relation between the various vectors in the DWBA matrix element. The point
B 1s defined to lie on ry, at a distance fry, from A

Next we mtroduce an mtrinsic coordinate system with the 3-axis along r, and such
that the transferred particle lies m the (1, 3) plane with a positive 1-component.
We thus find

f/ly(rlb ] rbA) = Z Diu'((p’ 97 ‘p)f;:’“ rlllﬂ H ri-’ ra)’ (212)
"

where the expression for f35" 1s formally the same as (2.3) except that the azimuthal

angles in both single-particle wave functions are zero and the polar angles are measured
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n

from the vector r,. Thus f3;" depends ouly on the shape of the triangle mn fig. 1 as
specified by the longitudmal component (ry;); = r‘l'p and transverse component
(rip), = rrofr, g and on the modulus of r,. The Eulerian angles 6 and ¢ are the polar
coordimates of r, while i specifies the last rotation bringing the (1, 3) plane nto the
plane of fig 1.

Similarly we find

YI:mp(?ﬂ) = Z(D:::mp’((p’ 0’ l/I)Yl:mp'(Ao’ 71,'), (213)
mg
where 46 1s the (small) angle between r; and r,, 1.¢.
s 40 = tyrifry. (2.14)

Inserting (2.12) and (2.13) 1n (2.7) we can perform the integration over the angles
@, 0 and ¥ to find

4n 20,+1
e =51 (lﬂlama”ﬂmﬂ)‘/ i Igas (2.15)
B
with
I, = 2n f r2dr, j rdrtarl, e o) mlkerd gy (216
o rl>o0 Tg Fy
where

Fﬁa(rlllﬁa r-lLs ra) = J Z ().ﬂ’la()ilﬁ #’)Ylﬂ—p’(dgy O)f)f:’"(rlliﬂa r%, ra) (217)
"

The length of r,; can be obtamed m terms of r,, ril; and r{ by eq. (2 8) The terms with
i’ < 0 can be obtained from the terms with u’ > 0 by the symmetry relation

St = (VTR (2.18)
where 7 1s the total parity change in the reaction This leads to the selection rule
I, +lg+n = even while the u’ = 0 term has the selection rule /,+/;+4 = even.

In order to evaluate (2.16) numerically we perform a Taylor expansion of the exit
channel wave function about the point sgr,; that 1s,

MAky, g2 N
Xiy(kg, 75) = )3 )*Cl—”—(——i—'—s—) (rs—spry)’s (2.19)

where the superscript (v) denotes the vtk derivative with respect to r, We can then
write the integral (2.16) 1n the form

Iﬂa = fo dra{ Z sz)(kp » Sp ra)r: F;a(ra)}Xlz(ka s ra)’ (2'20)
where
N 2z ry (rs—5s7a.\"
) =2 [ | rartar = (0TRE R ) @)
viJediso ) T

For further details we refer to ref 8).
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3. The WKB approximation
31 WAVE FUNCTIONS

In calculating the matrix elements like (2.20) well below the Coulomb barrier in
both entrance and exit channels, one can approximate the regular wave functions ¥,
by the WKB solution

\/m sin (frk(r')dr’+i7t) ,  r>Ty (3.1a)
7(r) = °
IV k[x(r) exp ( f x(r’)dr') , r<rg. (3.1b)
where the local wave number 1s given by
Ar) = k\/l — Veee(7)/E, (3.2)
whule
K(r) = kv/Ve(r)|E-1. (33)

The asymptotic wave number k 1s related to the c.m. energy E by the relation E =
h2k?*/2m where m 1s the reduced mass. The effective potential 1s

V) = hz(l +%)2

+ U(r)—iw(r), 3.4)
where U—iW 1s the complex optical potential.
For real potentials there are usually three turning points rq satisfying the relation

K(ro) = 0. (3.5)

Well below the barrier only the real, outermost turning point 1s to be used in (3.1).
When an absorptive potential 1 1s mtroduced this outermost turning point 1s shifted
into the lower half of the complex r-plane, but the approximation (3.1) 1s still valid #)
provided one defines the square roots m (3.2) and (3.3) to have positive imaginary
and positive real parts respectively. The point on the real axis at which one should
switch from the simne function to the exponential function 1s not clearly defined by
(3 1). However for r = Re ry, of the two exponential terms in the sine function (3.1a),
one coincides with (3.1b) while the other 1s exponentially small; actually smaller the
further the turning point 1s away from the real axis.

One may utilize the above considerations on the WKB solutions for reactions with
energies above the Coulomb barrier. In this case one also finds three turning ponts.
Provided W = 0, one of them (the 1nnermost) 1s real, while the other two are com-
plex conjugate to each other and have a real part close to the radius of the Coulomb
barrier By appropriately choosing the sign of the square root 1n (3.3) one can write
three WKB solutions to the wave equation nserting each of these turning points into
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(3.1). Whule for the innermost turning pont (3.1) can be used directly for all values of
r, the solutions associated with the complex turming points have purely incoming or
outgoing waves 1nside the Coulomb barrier since x 1s purely imaginary in this region.
If the turning point 1n the lower half-plane 1s used in (3.1), an almost continuous
WKB solution 1s obtained along the real axis by choosing Imx < 0, while for the
other complex turning pomnt an equivalent approximation i1s obtamned choosing
Imx > 0 Note that these two WKB solutions are complex conjugates (time reverses)
of each other.

The solution associated with the real turning point has standing waves nside the
Coulomb barrier, while the solutions corresponding to the turning points lying in the
upper and lower half-plane have the boundary condition of outgoing and incoming
waves respectively in this region. Because of the many reactions taking place nside
the barrier the latter boundary condition corresponds to the true physical situation

In what follows we will use this solution associated with the lower turning point as
the WK B approximation to the distorted waves of sect 2for general potentials with an
imaginary part W acting as a sink inside the nucleus'. In the surface region W is small
compared to the real potential and we may consider the effect of the imaginary
potential as a small perturbation. The complex turning point s then given, in terms
of the turning pomt 7, for W = 0, by the relation

dVeet
dr

(3.6)

ro = ?0+1W(F0)/ K

ro
It 1s seen from (3.6) that the turning point 1n the lower half-plane moves continuously
mnto the outermost turning point as the energy 1s decreased from above to below the
the Coulomb barrier. The turning point on the inside of the Coulomb barrier 1s
similarly contmuously connected with the turning pomnt in the upper half-plane and
never coalesces with the turning point on the outside of the barrier.

In subsect. 3.2 we show how to recast the DWBA matrix element in the WKB
approximation into a path ntegral in the complex plane. For this purpose we need
the WKB solution (3.1) to the wave equation in the entire complex plane as discussed
in ref. 7). We write this solution m the form

. () + v ()] mnside &
w) = {%wrg(r) outside . (3.7)

The domain 2 (see fig 2) 1s defined as the region between the Stokes lines S, and S,
emerging from the outer turning point. The Stokes lines are formed by the points r
satisfying the relation

Refr A(r')dr' = 0. (3.8)

t The WKB solution associated with the upper turming point, being the complex conjugate of
this solution, corresponds to the situation where W acts as a source



WKB APPROXIMATION 105
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Fig 2 The analytic continuation of '* [cf eq. (39)] On the first sheet (a), above the cut
indicated by the wavy line, y'® represents an mcoming wave for large values of r. As ! 1s continued
anticlockwise around r, 1t becomes exponentially mncreasing along Stokes line S,, decreasing along
Stokes hne S; and increasing along Stokes line S;. Below the cut in region 2 the continuation
of ¢i* 15 the outgoing wave y°* given by (3.10) As the anticlockwise continuation proceeds
through the cut the second sheet 1s entered. The behaviour under further continuation in the second
sheet 1s shown m (b). The values of the function m the third and fourth Riemann sheets are
obtained from those n the first and second sheets, respectively, by an overall change of sign The
further continuation from the fourth sheet anticlockwise leads into the first sheet

There are three such lines emerging from r, which, close to ry, are separated 120°
from each other °).
The wave functions ¥*", y°* and yy"® are defined by

P(r) = ¥ V% exp |:—i J:)k(r’)dr'] , (3.9)

W) = V% exp |1 ayar | 10

S = V% exp [ J' ;x(r’)dr'] : (3 11)

where 0 < arg k(r) < m and |arg x(r)| < 3.

The functions (3 9) - (3.11) are defined on four Riemann sheets. Two of these
sheets, joined along a cut in the region &, are illustrated 1n fig 2. The analytic con-
tinuatton of Y'" anticlockwise above r, becomes 1dentical to ™2 [cf. fig 2(a)] and the
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further analytic continuation of this function below ry brings it into Y°*'. If the
function ¥°** is further continued anticlockwise above r, 1t goes into the rrregular
solutiont along S; and finally into —y® 1n the region & [cf fig. 2b]

3.2. MATRIX ELEMENTS

We now turn to the evaluation of the matrix element (2.16). The turning points
corresponding to entrance and exit channels are illustrated 1n fig. 3 together with the
associated Stokes lines. As a first step we deform the path of integration in (2.16)
from the real axis to a path P that goes through the two turming points as indicated in
fig. 3. The two ntegrals (from O to o) are equal insofar as the region between the
two paths does not contain any singularity of the integrand.

sll
o Ir -plane s% -2

N . \s‘;

Fig. 3. Turning points and their associated Stokes hines for entrance and exit channels. The path P
1s used to evaluate the DWBA radial integral. The path C may be used to evaluate the WKB approxi-
mation to the radial integral The wavy line indicates cuts associated with the turning points.

The sequence 1n which the path P goes through the turning ponts rg and £ 1s such
that 1t first encounters the point whose domain £ contams the other turning point.
Thus prescription 1s unique when the turning points are well separated and close to
the real axis If the turning ponts are close together or far below the real axis the
sequence 1s irrelevant for practical purposes.

Having deformed the path of integration to P, we now substitute the WKB ap-
proximations (3.7) for the entrance and exit channel wave functions n (2 16). Con-
sidering the exit channel, we use

rﬁ ~ SBra—'tBrlllp, (3.12)

in the argument of 7,, having neglected terms of the order (tr{}/rs)* [cf. ref. %)].
Thus we use

3[Win(s ) exp [1K (spr )il ] + 45 (sp r) exp [ —iK sy r)ris]),
Tay(rg) = inside I (3.13)

30 (se r.) exp [1IK (sg Ta)rlllp], outside 2,

t The function 9! 15 given by (3 11) with a minus sign 1 the exponent.
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where, consistent within the WKB approximation, we have neglected the variation 1n
(A5(rp))~* and (x4(rg))~* as functions of rys. The quantity
K(r) = tphy(r), (3.14a)

corresponds to the classical longitudinal component of the local momentum of the

transferred particle while
K(r) = itgrey(r). (3.14b)

We also use in eq. (2.17) the expression

Y,y -n(46, 0) ~ V”;:l Tu(K'rD), (3.15)
where
t= tﬁ(lﬂ+%)/s8rau (316)

represents the classical perpendicular component of the local momentum of the trans-
ferred particle. The result (3.15) comes from the large /; imit and from approximating
sn4d0 =~ 40 in (2.14) consistent with the approximation (3.12). Finally m (2.16) we
set 1/rg equal to 1/spr,.

Under the above considerations the integral (2.16) 1s written as

ZU#7Wh )V

21,,+1 1

{f B, dru‘p‘l):t(sB ra)flu’(_K”’ Kl’ ra)ila(ra)
rof/ss

+fwn dro Wiy (ss ) fau (K, K, )70 (r)

of/sp

rof/sa _
i f L dradisera (K, K, ra)i,,(ra)} ; (3.17)
where
flu’(KH, KJ-, ra) — gﬁl ldrfdrlllﬁ elK”(SB r,)rlﬁll
SB r1-!->0
 J (K (spr)r ) o (rlly s 71, 7). (3.18)

Outside the turning points, on the real axis, the form factor (3 18) 1s 1dentical to the
semuclassical form factor 18)

Next we nsert the expression (3 7) for the radial wave function m the entrance
channel Of the resulting seven terms we neglect

[ arairso R K i), 19)
o

as both wave functions are exponentially decreasing from the upper limit. In the same
approximation we can neglect the integrals from rj to co contaming the product

1 Y1, since we can deform the path of integration to follow the Stokes line S5 down
in the fourth quadrant, closing the path at infimty where the form factor vamishes.
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Along this path, C,, both functions are exponentially decreasing as indicated in
fig. 2b. A similar argument applies to the term containing the product /3, ¥/, where
the path C, following the Stokes line S5 in the first quadrant leads to exponentially

decreasing functions.
The sum of the remaining four terms can be combined into a loop integral along C
which circumvents both turning ponts (cf. fig 3) 1e

, ~l/21+1 1 ou n
Iﬂfl = Z (l/,l lﬂollﬂ# )V Z (_' _)f dr, ll/lpt(sB ra)fl“'(—K“, KJ-, ra)lp,a(ra)
'3 T 4/ Jc
!

2l +1 n
(-
4r 4

exp (i [ :"&,,(r')dr'— J;ka(r')dr'])
NN . (3.20)

Thus result was obtained utilizing the properties illustrated 1n fig. 2. From eq. (3.20)
it is seen explicitly how the DWBA matrix elements are only sensitive to the form
factors from the complex turning point in the lower half-plane and out along the real

axis.
In the applications we shall use a series expansion of the form factor (3.18) in

powers of the longitudinal momentum i.e.

Fud KU, KA 1) = 3 (K (sa r ) fu (v, K5, 1), (3:21)

= Z, (}»ﬂ,laollp M’) V
u

X fd"afzu'(“K“, K4 r)
c

which corresponds to the Taylor expansion (2.19).

For the case where the turning points are located in the opposite sequence of that
shown 1n fig 3 the same expression (3.20) applies provided the loop C starts below
the cut and circumvents the turning points clockwise

If the two turning points are close together one may use either contour with essenti-
ally the same result In this case one can expand the phase difference

Ap = f s‘:’dr&,,(ry f ':drléa(r), (3.22)

appearing in (3.20) to first order n the energy difference E(f)—E(e), the angular
momentum difference l3—1,, the difference n reduced mass mz—m, and the differ-
ence 1n optical potential One finds

Ap = %(E(ﬂ)—E(ac))t—-(l,,-la)d)(t)+ % J:[Ua(r(t'))—— U(r(t"))+3(mp — m)(v(t'))*]de’

g ( M _ ﬁ) m, #(t) - o(t). (3.23)

h my+ mpg
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We have here introduced the average position vector #(¢) between the classical motion
in entrance and exit channel and the corresponding velocity ©(t) = #(t) The quantity
¢(¢) 1s the azimuthal angle in the plane of the average orbit measured from 1ts symme-
try axis The phase (3.23) is 1dentical to the phase appearing in the semiclassical de-
scription of transfer reactions '). The quantal reaction matrix s thus in this limit
identical to the semiclassical reaction amphitude [cf eq. (24) in ref. #)], if we are
below the barrier For reactions above the barrier the semiclassical approximation
still applies if one lets the time ¢ 1n the neighborhood of ¢ = 0 become complex such
that the corresponding r-value encircles the outermost complex turning point ®).

4. Applications

In thuis section we illustrate the WKB results given in sect. 3 by calculating the
angular distribution for elastic and 1nelastic scattering and transfer reactions in first
order perturbation theory.

4 1. TURNING POINTS

In fig. 4 we show the turming points in the elastic channel for the case 20 + 3Ny
at 60 MeV. The parameters of the optical potential used are given 1n table 1. They
were obtained in ref. 1°) by fitting the corresponding elastic scattering data. The
potential is typical in that 1t gives rise to a well defined barrier 1n the surface region
and strong absorption in the interior. We also show turning points when the imagmary
part of the potential is set equal to zero. Thus 1t can be seen that for partial wave / =
30 the energy 1s just below the barrier in the effective potential and all lower partial

TARLE 1

Optical parameters used in the calculations

Reaction V (MeV) W (MeV) ro (fm) a (fm)
58N1(180, 180") —901 429 1.220 0.50
48Ca(*4N, 13C) —700 10.0 1225 065

waves surmount their respective barriers. For 50 < / £ 85 the mmimum of the inner
potential “‘pocket” 1s greater than the c m energy. For [ > 85 the effective potential
no longer exhibits a pocket.

In fig 4 we show the turning points which were calculated solving the equation
£(ro) = O numerically. For the outermost turning points where the imagmary
potential, as 18 typical for heavy i1on reactions, 1s small compared to the total real
potential, one can calculate ry utiizing the linear approximation (3.6). The accuracy
of this approximation is shown m fig 8.
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2
T 80 4 %N,

Eips = 60MeV

y
(fm)

Fig 4 Complex turning points for 120 - 38Ni at Ej,, = 60 MeV calculated with the optical potential

given 1n table 1. The open dots show the turning points when the imagimnary potential is set to zero

while the full dots are for the complex potential. The numbers give the angular momentum of

various partial waves The solid Imne with arrows shows part of the integration path used in the

WKB calculations. It returns to the real axis outside the range of nteraction. The plus signs
indicate positions of poles in the potential.

4.2. ELASTIC SCATTERING

The nuclear reflection coefficient #; 1s defined in terms of the nuclear elastic phase
shift 8, as

m = e (4.1)
The WKB approximation to the phase shift follows from the asymptotic form
#i(r) = sin (kr—4nl—n In (2kr)+&,+96)), (4.2)
of the WKB wave function (3.1). Here
& = nInJp? + (143 +(+Htan ™ (1)(+), (4.3)

is the WKB Coulomb phase sluft, which for large values of / has the same variation
with / as (2 5)
The WKB nuclear phase shift can be written

5 = f I:é(r)dr-— f I:C/éc(r)dr, (4.4)

where A¢(r) is the wave number 1n a pure Coulomb field, r§ being the corresponding
turning pomnt and R is a pont on the real r-axis outside the range of the nuclear
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potential. The second integral in (4.4) can be given m closed form while the first
integral may be performed on any path from r, to R avoiding the singularities of
£(r). One may also use the expression

f:k(r)dr - % Lk(r)dr, 4.5)

where C 1s a path of the type shown 1n fig. 3 beginning and ending at R circumventing
the turning point r.

T T T T =TT 1 T
(a)
1.0 ( e_ZImGL e VA
08 -
06 ° -
0.4 - ) 18 58 1
O + °Ni
L H Eiap = 60 MeV
. « exact

02 L e s oo WKB .
N B L1 1
25 30 35 L 40
1o b (b) i
I 2Reb; A
(rad) - e %% 4
}_ ° . ’ 3 o
[ o " s 8 ._
00 —*—‘:——}vﬁk——i——of—f—fc—-’raf—-ﬂ——a—}———e———:——.o—:—f——
l: 25 30 35 £ 40,
g %
-10 A

Fig 5. The magmtude (a) and phase (b) of the nuclear reflection coefficients for 180+ 58N at

Epa» = 60 MeV using the optical potential of table 1 The full dots are the results from in-

tegrating the Schrodnger equation numerically. The open dots are calculated in WKB approxima-

tion using the expression (4 4) and the outer turming points in the lower half-plane shown 1n
fig. 4 (see also fig 8)
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L T T T 1 I T i 1
Tet
r
780 + SBNI
Eap = 60MeV
10 W\/»“\\ —  exact
F .\ .« WKB j{
| B
01 — —
- ‘ ]
001 |- -
| {1 ! ! ! 1
25 45 65 85 Ocm

Fig 6 Elastic scattering angular distribution for **0-- 58Ny at E,, = 60 MeV calculated with the

optical parameters 1n table 1 The reflection coefficients shown in fig. 5 were used in the cal-

culations The full drawn curve 1s the result of a four parameter least-square fit to the elastic
scattermg data 1)

Having calculated the WKB phase shufts with (4.4), we display the corresponding
reflection coefficients 1n fig. 5 1n comparison with exact optical model calculations
for the case of 80 4 38N discussed above Simular results for other cases have been
given 1n refs. > ¢) They show a major improvement over the corresponding results
presented i ref. *) [cf ibid. case III, fig 4.1].

It 1s seen from the turning potnts in fig 4 that the phase shifts depend only on the
tail of the optical potential. Since the imaginary potential 1s small in the surface region,
the results shown 1n fig. 5 are qualitatively understood as being due to reflection off a
real barrier 1n the presence of a small amount of absorption. Because of the absorp-
tion, the turning point for the critical partial waves 1s pushed outwards [cf. eq. (3.6)]
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to a position n qualitative agreement with what would be inferred from the Blair
quarter point recipe based on a Coulomb trajectory'.

To assess the importance of the discrepancies between the WKB and exact phase
shifts we compare the corresponding elastic cross sections in fig. 6. They were calcu-
lated utilizing the scattering amplitude

i

f(8) = fr(0)+ 3 . 21+ 1)e (1 —n;)P(cos 6), (4.6)

ka

where f3 1s the Rutherford amplitude. The summation was carried out directly with-
out using the saddle-point technique of refs. * 7). The argreement 1n fig. 6 can be
followed by another order of magnitude down before significant differences appear.

43 INELASTIC SCATTERING

We turn next to two examples of inelastic scattering. The first 1s a typical case of
Coulomb-nuclear interference in the excitation of a low-lymg collective state which
will facihitate comparisons with previous semiclassical approaches. The second 1s an
hypothetical nuclear excitation of a high-lying state for which previous approaches
would break down.

We consider first the reaction **Ny(*20, '80’)*®Ni(2*; 1.45 MeV) at 60 MeV
which was analyzed in DWBA using the optical parameters of table 1 and the collec-
tive form factor 1) The analysis gives a satisfactory description of the data which
shows the characteristic oscillations produced by Coulomb-nuclear interference ).

The WKB radial integrals for this case are given by (3 20). Part of the path of
integration is shown 1n fig 4. Since the form factor 1s known as an analytic function
on the real r-axis, we simply use 1t in the complex r-plane 1n connection with (3 20)
Because this reaction 1s well matched there 1s no significant contribution coming
from between the entrance and exit channel turning pomts. To check this we perfor-
med the integral of (3.20) clockwise as well as anticlockwise around the turning points
and found no significant difference.

The radial integrals (3 20) were used to construct the total transition amplitude
given by

T3.(0) = zzz 1’“‘_"’(1,3 mA—m| 110)\/21,, +1 exp [l(a,p +01,+01,+01,) M1, Yium(0, 0)
Blx
(4.7)

The corresponding angular distribution 1s shown n fig. 7 in comparison with the
DWBA result. Note that in the WKB calculation we used the WKB nuclear phase
shifts 1n (4.7).

In the present case the semuclassical expression for the matrix element obtained by
mserting (3 23) into (3 20) can be used. The attempt in ref *) to use this approxi-

T Note that the derivative of the nuclear phase shifts with respect to [ tends to zero for the
critical partial waves so that the critical deflection angle becomes equal to the Rutherford value
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Fig. 7. Angular distribution for the inelastic scattermg of %0 with Ej,, = 60 MeV exciting the
first 2* state of ¥Ni The calculations use the optical parameters of table 1 and the collective
nuclear form factor proportional to the derivative of the (complex) nuclear potential. Part of the
path of integration for the WKB calculation using eq. (3.20) 1s shown 1n fig. 4. The entire path
was rectangular extending out to 25 fm. Both calculations used partial waves up to /m,x = 100
This accounts for the unphysical drop at forward angles and the small, high frequency oscillations
appearing for 0. , > 45° Both features are absent 1n the data analysis 1°) which used /me: = 400.
The calculations shown actually fit the available data rather well

mation on a simular case failed because the wrong turning point was used when the
barrier was exceeded ).

Two features make the previous case relatively simple from a semiclassical point
of view. It 1s well matched and the long range quadrupole Coulomb interaction
insures that Coulomb excrtation contributes significantly, if not dominantly, to the
final cross section. To check the range of validity of (3.20) we consider a hypothetical
reaction **N1(*80, 1807)*8Ni1(0™; 10 MeV) again at 60 MeV 1n the entrance channel.
We suppress the Coulomb excitation and use a form factor proportional to the
derivative of the real nuclear potential The entrance and exit channel turning points
given 1n fig. 8 show the large mismatch 1n the present case. Since the exit channel
turning points are almost outside the range of the nuclear potential, the radial integrals
receive large contributions from between the turning points.
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Fig. 8. Outermost turning points 1 the entrance channel (sohd dots) and mn the exit channel

(open dots) for the fictitious reaction $8N1(120, 130')58N1(0*; 10 MeV). The potential parameters

are given 1n table 1. The plus signs result from taking the turning points of the real potential

in the entrance channel and including the imaginary potential as a small perturbation according
to eq (3.6).

The WKB and DWBA rad:al integrals for this case are compared in fig. 9. The
largest deviation 1n the magnitude of the integrals occurs for partial wave I = 18 and
18 8 %. In this example the correct sense of integration in (3.20) 1s clockwise. The
results are an order of magnitude too large if the opposite sense is taken (cf. fig. 9)

Note that the radial integrals appear n the partial wave summation (4.7) mul-
tiplied by the average reflection coefficients

Mipr, = eXp [2(8, +6,)]. (4.8)

In other words, the partial reaction amplitudes factorize into amphitudes for reflection
depending only on the elastic scattering and transition amplitudes depending on the
interaction coupling imitial and final states. It 1s the decreasing amplitude for reflection
as one goes above the Coulomb barrier which causes the reaction amplitudes to
decrease for the low partial waves, giving rise to the familiar “‘surface peaking” n
angular momentum space. The partial transition amplitudes, or radial ntegrals as
we have defined them, increase rapidly as the turning points move mto the range of
nuclear mteraction and then tend to saturate (see fig. 4).

In fig. 9 we also show the partial reaction amplitudes. The discrepancy with the
DWBA for I = 18 increases to 13 % due to the inaccuracy of the WKB phase shifts
This shows why the reaction cross sections are more sensitive to the elastic optical
parameters than the elastic scattering itself ?). The resulting WKB angular distri-
bution is shown in fig. 10.
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Fig. 9. Radial matrix elements for the fictitious reaction S¥Ni1(*20, 20")¥N1(0+; 10 MeV) at
Ej., = 60 MeV The optical parameters in table 1 were used for the distorted waves while the
form factor was taken to be proportional to the derivative of the real nuclear potential. Coulomb
excitation 1s not mncluded The solid dots 1in (a) are the magnitudes of the WKB mtegrals while
a smooth solid line has been drawn through the corresponding DWBA results. In (b) the
corresponding phases are plotted. The open circles and dashed lines 1n (a) result from multiplying
the WKB and DWBA integrals by the corresponding average reflection coefficients The crossed
line shows a few of the WKB integrals when the wrong sense of integration 1s used

4.4. ONE-PARTICLE TRANSFER

The above examples test the main approximation of using WKB wave functions
with incoming wave boundary conditions. Previous semiclassical calculations of
transfer reactions *3) treated recoil approximately and were carried out along the
real axis using a restricted class of optical potentials.



WKB APPROXIMATION 117

T 1 T T T T T T

Eiae = 60MeV
Ey» = 10MeV

- DWBA —
WKB

| ! ] } | 1 )
70 90 110 130 By

Fig. 10 Angular distribution for the reaction 3¥Ni(120, *20")%8N1(0+, 10 MeV) at E;,p = 60 MeV
(cf fig 9) The units are arbitrary.
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Fig. 11. Outermost turning points 1n the entrance and exit channels for the reaction “4Ca(*4N, 12C)
498¢(37) at E,, = 50 MeV using the optical potential given 1n table 1.
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Fig 12 Angular distributions for the normal and non-normal angular momentum transfers 1n the
reaction *Ca(**N, 13C)*?Sc(3~) at Ep = 50 MeV.

We have studied the reaction *3Ca(**N, 3C)*°Sc(3™; Q = —101 MeV) at 50
MeV. The optical parameters that were used are given 1n table 1. These parameters
do not produce a quantitative fit to the corresponding data !* 15) but have been
used to compare different DWBA computer codes which take recoil into account
exactly?. The outermost turning points are shown in fig. 11. It 1s clear that this case 1s

very well matched.

t We found that the imaginary potential was actually too weak to completely remove 1nternal
reflection. These features can be seen 1n the DWBA radial integrals but have little effect on the cross

section
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The form factors f,,.(v, K*,r,) appearing n (3.21) were calculated numerically
along the real axis for use 1n the DWBA calculation *®). A pure Ip 3 configuration
wave function was used to describe the motion of the proton around *3C while “°Sc
was described as a 2p, proton moving around 48Ca. We then parametrized these
form factors by functions of the type

fuw(v, Kt 1) = Ae™™"r, (4.9)

adjusting the values of A and x by fitting the computed form factor at r = 9 fm and
r = 10 fm. For the grazing partial waves the deviations from the true form factor at
r = 8 fm and r = 11 fm were typically 5 % and 1 % respectively.

The comparison of DWBA and WKB cross sections 1s shown 1 fig 12 for both
the normal and the non-normal angular momentum transfer. In this case we use the
exact reflection coefficients (4 8) in the WKB calculation. When the WKB reflection
coefficients are used the results are shifted to lie approximately 259, above the
DWBA curves.

The calculations shown in fig. 12 have been carried out to second order 1n the
Taylor series, that 15 v,,, = 2 was used 1n (2.19) and (3.21). We have also compared
the DWBA and WKB for v_,, = 0 and the agreement 1s equally good. The effect of
the Taylor expansion 1s not very large in the present case. The zeroth-order results
lie about 25 9 below the second-order curves. However, the numerical calculations
clearly show that the effect of the Taylor expansion of the wave function 1n (2 19) 1s
accurately reproduced by the power series in the local momentum m (3.21).

5. Coupled equations

In this section we would like to point out that the WKB approach can readily be
extended to coupled-channel problems. This 1s easiest to show 1f we neglect recoil
and non-orthogonality effects since then the formalism of ref. *) may be taken over
directly.

Thus we approximate the coupled-channel regular wave function 1n a particular
channel B as

Tp(r) = e (W () +c5 (N3 (r), (5.1)

where y°"/'™ are the WKB approximations to the outgoing and 1ngoing solutions for
the uncoupled problem as given by (3.9) and (3.10). Substituting (5.1) in the Schro-
dinger equation and neglecting second derivatives of ¢*, linear equations for c¢* are
obtained in the form

) = £ T Va0 0) (52)
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The ¢~ amplitudes are integrated inwards starting with the boundary condition

¢; (00) = 6, (5.3)
o berng the entrance channel. They are then matched to the c* amplitudes which in
turn are integrated outwards The total scattering amplitude may be constructed
from the asymptotic values of ¢* It 1s clear that outside the various turning points
the outgoing set of equations is the analytic continuation of the ingoing set Thus the

matching can be achieved by integrating the ingoing equations around the various
turning points. The asymptotic values of ¢* are thus given by

67 () = b= [ dr U OO0 0) (5.4)

These equations have been applied below the Coulomb barrier to the problem of
Coulomb excitation *7) Substituting (5.3) into the right-hand side of (5.4) leads to
eq. (3.20). Thus (5.4) is consistent with the first-order solution (3.20).

While 1t is clear from (5.2) that the integration path C must go around the various
turning points, the manner 1n which thus is to be done 1s not obvious. To study this
problem we have considered the second-order solution to the quantum mechanical
coupled-channel problem. Specializing to three channels «, § and y corresponding to
entrance, exit and intermediate channels respectively and assuming all diagonal
matrix elements are zero, the second-order contribution to the reaction amplitude
involves integrals of the type %)

1 = [0 u00) [0 0 B W)
O [ Wl | 69

where A" refers to the outgoing solutions of the uncoupled equations.
Assuming that the turming point #£ in the channel g lies to the left of turning
point r§, approximating x by (3.7) and 2" by

: out
N »
VE(r), forr <ry,
the WKB expression for I, may be evaluated for various locations of the turning
point r}. Neglecting terms containing products of exponentially decreasing functions
as was done m sect. 3 and utiizing the analytic properties summarized in fig 2 one
finally arrives at the result

I, = %if OO O I A QA GG (57)
C C(r)

if #§ lies between the turning pomts r§ and r§. The path C goes anticlockwise around
all three turning points. The label C(r) means that the inner ntegration follows the
same path as the outer integration up to the point r.
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The sense of integration 1s the same as that required for the first order ampli-
tudes The case when r 1s between r& and r§ is the most favored two step process
from the point of view of Q-values. Therefore, we expect that use of the sense defined
by the first-order transition may approximate higher order transitions as well.

6. Conclusions

The difficulties that were earlier encountered 1n using a semiclassical or a WKB
treatment for heavy 1on reactions above the Coulomb barrier have been solved by
utiizing WKB solutions corresponding to an incoming wave boundary condition
inside the barrier.

We have shown how to express the distorted wave matrix elements 1n terms of a
loop ntegral around the complex turming points in the lower-half complex r-plane.
This formulation provides a generalization of the classical orbital integral which can
be also used for badly matched reactions where the Q-value 1s very different from its
optimum value.

Through the systematic comparison of this method with DWBA calculations for
reactions above the Coulomb barrier, we have shown how the cross sections are
completely determined from the knowledge of the form factors and optical potentials
1n the neighborhood of the complex turning points close to the Coulomb barrier in
the lower-half r-plane

The path mtegral concept 1s expected to provide a powerful technique also for
coupled-channel calculations.
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