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A study of semiclassical approximations for heavy-ion 
transfer reactions 
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Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 
3NP. UK 

Received 14 December 1977. in final form 3 May 1978 

Abstract. Semiclassical concepts have been used to obtain a formula for determining 
angular distributions for heavy-ion transfer reactions starting from the expression of the 
transition matrix in DWBA. The distorted waves are expanded in partial waves and the 
radial wavefunctions approximated by the WKB approximation. Further approximations 
enable one of the partial-wave summations to be performed analytically. The transfer 
matrix element occurring in the resulting formula has been simplified to a one-dimensional 
integral by assuming a straight-line orbit for the relative motion. As an illustration, angu- 
lar distributions have been Calculated for the reactions Z6Mg("B, "B)"Mg and 
26Mg(11B, 'oBe)27A1 at 114 MeV laboratory energy and compared with experiment. The 
agreement is good. 

1. Introduction 

When two complex nuclei interact the wavelength associated with their relative 
motion is often short compared with characteristic nuclear dimensions. In such cir- 
cumstances semiclassical concepts can be used in formulating reaction theories. Semi- 
classical theories are often more of an aid to the understanding of the physics rather 
than a means of performing systematic calculations, but it seems that they may be 
accurate enough to replace more exact but lengthy quantal theories in the analysis 
of experimental data. 

One class of semiclassical theories for scattering problems is based on the WKB 
approximation in three dimensions. The wavefunction at a given point is given as 
a sum of semiclassical terms, each corresponding to a different classical trajectory 
ending up at the same point. This kind of theory is described in the work of Knoll 
and Schaeffer (1976). Derivations based on the Feynman path-integral method are 
similar in character (cf Koeling and Malfliet 1975). In theories based on classical 
trajectories it is not necessary to make any partial-wave expansion of the scattering 
wavefunction. 

Another approach for calculating reaction cross sections is based on the distorted- 
wave Born approximation (DWBA). A formula for the total reaction amplitude can 
be written as a sum of contributions from different partial waves. In the work of 
Landowne et a1 (1976), the radial matrix elements in this formula are calculated 
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using WKB wavefunctions and then the contributions of different partial waves are 
summed numerically. Broglia et a1 (1974) make some further approximations to sum 
the partial-wave series and these authors are able to established a link between the 
partial-wave method and the classical trajectory method. This partial-wave method 
leads to a formula for the reaction amplitude f(x,  8) of the form 

f ( @ ,  P). c (21 + v(7, 1) Ylm(., PI (1)  
I 

where ~ ( 7 ,  1 )  is a partial-wave amplitude containing a damping factor which takes 
into account absorption into other channels. In equation (l), M is the z component 
of transferred angular momentum and z stands for various other quantum numbers 
characterising the reaction. In some works simple parametrisations of the partial-wave 
amplitudes y ( ~ ,  I )  have been used (Strutinsky 1973, Frahn 1975). 

In this paper we give a derivation of equation (1) for transfer reactions when 
one nucleon or an equivalent cluster of several nucleons is transferred between inter- 
acting nuclei. Our formulation starts with the expression for the transition matrix 
in the DWBA. The approach has some similarities with the work of Broglia et a1 
(1974) and Landowne et a1 (1976), but differs in several respects. We make a partial- 
wave expansion and calculate the radial matrix elements using the method of Lan- 
downe et al (1976). The partial-wave series contains a double sum over the initial 
and final orbital angular momentum quantum numbers. We use an approximation 
to make one of these summations analytically. Our aim is the same as that of Broglia 
et a1 (1974), but the method we use is much simpler. This is one of the new features 
of the present work. The final expression for the amplitude has the form of equation 
(1) and the amplitude ~ ( 7 ,  1 )  is given by a time integral over a classical orbit appro- 
priate to the final state of the system. The method involves an expansion about 
the final orbit and can be used only in situations where energy and angular momen- 
tum transfer are not too large. This part of the work is described in $93, 4 and 
5 of the paper. 

Recoil effects are included in the calculation by an approximation in the initial 
and final distorted waves before the partial-wave expansion is made. The method 
is described in $92 and 6. 

The partial-wave transfer amplitude is evaluated in $7.  It is given by a time 
integral of a matrix element of a potential between the initial and final single-particle 
states, and involves a four-dimensional integral (one over the time variable and three 
over space variables). The most important contribution to the time integral comes 
from the part of the classical orbit near tffe point of closest approach between the 
interacting nuclei. For high incident energies this part of the orbit can be approxi- 
mated by a straight line tangential to the orbit. Then the time integral gives a 6 
function in the tangential component of transferred momentum and the four-dimen- 
sional integral reduces to a two-dimensional one in momentum space. One of these 
is an angular integration and can be made analytically so that the final expression 
for y(z, I )  involves only one-dimensional numerical integration. This reduction is 
another novel feature of the present work. 

As an illustration, the method is applied to the study of the reactions 
26Mg(1'B, 10B)27Mg and 26Mg(11B, 'oBe)27A1 performed at 114 MeV laboratory 
energy. The angular distributions are compared with experiment (Paschopoulos et 
a1 1975). Spectroscopic factors agree well with those obtained from a conventional 
DWBA analysis. In the range of angular momentum where ~ ( 7 ,  I )  is large, the transfer 
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amplitude is seen to have an exponential dependence on 1. We give a qualitative 
argument which leads to this result and suggest an estimate for the decay constant 
of the exponential. 

2. Transition amplitude in DWBA 

Consider the reaction 

a,  + c2+c1 + a2 

or 

(c1 + x) + c2 --+ c1 + (c2 + x) 
where a particle x is transferred between two cores c, and c2. The starting point 
is the DWBA expression for the transition amplitude (Dodd and Grieder 1969, Austern 
et al 1964): 

P 

T,, = j xi-)*(kf ,  r f ) $ ; ( r 2 ) ~ ~ ( r 2 ,  ~ ) $ l ( r l ) x ! + ) ( k l ,  r , )  d3r2 d3rf .  (2) 

Here $1, $ 2  are the bound-state wavefunctions of the transferred particle x in the 
initial and final nuclei a,  and a 2 ;  xf”, X I - )  are the distorted waves which describe 
the relative motion of the nuclei in the initial and final channels. AV is the interaction 
responsible for the transition. The coordinate system is illustrated in figure 1. The 
coordinates r l ,  r 2 ,  rf, I,, and s are related by 

(3) rf = s - p 2 v z  r1 = (1 - Pl)S + PlVZ 

where 

1.12 = mx/(mx + mcJ a =  1 ,2  

and mx, nz,, and mcz are the masses of the transferred particle and the cores c1 
and c 2  respectively. 

The expression (2) for T,, is a six-dimensional integral. It can be simplified by 
making an approximation based on a semiclassical approach similar to the one used 

X 

Figure 1. Relation between the various coordinates appearing in equation (2). A I  denotes 
the centre of mass of c1 and x while A, denotes that of c 2  and x .  
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by Dodd and Greider (1969). The WKB approximation for the distorted waves xr-) 
is (Glauber 1964, Schiff 1968) 

where Sf(r.,) is a classical action function satisfying a Hamilton-Jacobi equation with 
boundary condition appropriate for a relative momentum kf after the collision, and 
1 A: 1 is the corresponding classical density function (Austern 1970). In the semiclassical 
limit, when h is small, the most rapidly varying term in equation (4) is S,/h. We 
expand this in a Taylor series about s up to first order in (r, - s) to give 

where 

is the local momentum at s on the classical orbit through s which has relative momen- 
tum k ,  after the collision. With this approximation 

f ) ( r , )  2 x [ - ) ( s )  exp [(i/h)(r, - s) . p,(s)]. ( 5 )  

Here we have assumed that At  is slowly varying compared with exp[(i/h)S,] so that 
A,(r,)  2: A, ( s ) .  The analogous expression for x!') is 

xj+)(rl)  2: x ! + ) ( s )  exp [(i/ti)(ui - s). pi(s)] (6) 

where pi(s) is evaluated on a classical orbit with asymptotic relative momentum ki 
before the collision. 

Substituting equations ( 5 )  and (6) into (1) and changing the variables of integration 
from r2, rf to s, r2, the six-dimensional integral can be written in terms of a form 
factor G(s) 

P ( S )  = P I P ,  + P2Pf 

= m,u(s) 

where u ( s )  is an average velocity of relative motion at the point s. Equations (7) 
and (8) are very close to expressions given by Dodd and Greider (1969). There are 
some differences because the approximations ( 5 )  and (6) to the distorted waves are 
not identical to the ones used by Dodd and Greider. Expression (7) for Ti looks 
like a no-recoil approximation to DWBA. Effects of recoil are, in fact, included in 
the phase factors in equation (8) for G(s) as discussed by Dodd and Greider (1969). 
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3. Partial-wave expan4on 

To evaluate equation (7) we make a partial-wave expansion of xl') and xi-)  as follows: 

In equation (9), 6( l )  is the sum of the nuclear and Coulomb elastic-scattering phase- 
shifts and f ; ( s )  is a radial wavefunction. 

Choosing a coordinate system so that ki defines the z axis and ( x ,  j) are the 
polar angles of the direction k, ,  equation (7)  yields 

Tf, = 

where 

(4n)3/2 C (21, + exp [i(dl(l,) + df(lf))] i'l-'f Y~,,,(CC, j) r(li ,  I,, m,) (10) 
I f 1, lrmr 

I " m  

and 

In equation (12), (s, 6, 4) are the polar coordinates of the vector s. 
In a heavy-ion reaction the dominant contributions to the sum (10) are expected 

to arise for large values of li and I , .  Hence we substitute the asymptotic forms of xm in equation (12): 

This gives 

+ COS [(/f + l j  + 1 ) O  + (mf - l)f.]} de d$. (14) 

As the second term in the integrand of equation (14) is rapidly oscillating, it is 
expected to give a small contribution. Neglecting it gives 

where 

y(s, L, M )  = Jozn j: e-iM1 G(s, 6,4) cos (L6 + + M n )  d6 d$. (16) 

Equation (16) shows that g ( s , L , M )  are the coefficients of a Fourier expansion of 
G(s, & $ I  : 

1 m + E  
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The functions cos(L8 + 3Mn) elM4 are a natural set for expanding G(s, H. 4 )  because, 
like G(s, 8, 4), they are invariant with respect to the transformation (8, 4)  --+ 
( -  8, 4 + TC) .  Throughout this work we make the physical assumption that transferred 
angular momenta are small compared with the total angular momenta of relative 
motion of the interacting nuclei. This means that only small values of L and M 
contribute to the sum (17) or, equivalently, that G(s, 8, 4 )  is a slowly varying function 
of 8 and 4. 

Equation (15) defining g(s, L, M )  gives the symmetry relation 

g(s, -L,  M )  = (- l)"g(s, L, M )  (18) 
and, by using this relation, equation (17) can also be written as 

4. WKB approximation for radial matrix elements 

The next step is to make a semiclassical evaluation of the radial matrix element 
(11). We use WKB wavefunctions for f ; ( s )  and follow the approach of Landowne 
et a/ (1976) to obtain 

where 

A ~ ( s )  = l:f &,(s') ds' - l:i di(s') ds' 

and 

where v(f)(s) is the sum of the Coulomb, nuclear and centrifugal potentials in the 
initial (final) state. The turning points are zeros of E - v(,). The integration 
is over a contour C in the complex s plane which circumvents the two turning 
points soi and sOf (figure 2). E is the centre-of-mass kinetic energy. 

For a complex optical potential there are several turning points, each of which 
is complex. Malfliet et al (Malfliet 1975, Koeling and Malfliet 1975) and Knoll and 
Schaeffer (1976) have shown that the optical-model scattering phases are well approxi- 
mated by the WKB phases calculated with respect to the outermost complex turning 
point when the absorption is strong. Consequently we shall use the results corre- 
sponding to this outermost turning point for our calculations. 

Equation (20) for I(li, lf, mf)  in the present paper is somewhat different to the 
analogous formula in the paper of Landowne et al (1976), though the method of 
derivation is identical. The differences occur because in the present paper we approxi- 
mate recoil corrections by equation (5) before making a partial-wave expansion. Lan- 
downe et a2 made the corresponding approximations in each partial wave separately. 
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Figure 2. The contour C in the complex i plane used for the integration of equation 
(20). 

5. Expansion about the final orbit 

Each of the quantities k, (s ) .  df(s) in equation (20) correspond to a classical orbit 
with particular values of E. I, V(s). If the orbits are not too different in the initial 
and final channels, we may expand about some average orbit. In this section we 
expand about the final orbit. 

With this assumption of well matched orbits, the turning points sOf,  so, are close 
together and we may take them to be coincident. We also replace k, (s )  by R,(s) 
in the denominator of equation (20), which may then be written as 

where the integrals are taken along the branch cut starting at the branch point 
sOf (figure 2). It is convenient now to change the integration variable from s to 
time using the equation s = sf(t) of the final orbit: 

ds/k,(s) = (h/pf) dt. 

Taking t real corresponds to a particular choice of the contour C. The integrand 
in equation (20) has a branch cut extending from so, to infinity, the two sides of 
the branch cut corresponding to t > 0 and t < 0 respectively while sOf corresponds 
to t = 0. Thus I corresponds to a time integral between the limits ( -  x, + x), while 
I +  and I correspond to time integrals between the limits (0, + x) and ( -  x, 0) 
respectively. The first-order expression for Ad(t)  is 

AQ;(t) = A$o(t) - (4  - U G f ( t )  (25 )  
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with 

where Uic,(s) is the Coulomb plus nuclear potential in the initial (final) state. The 
function O,(tj gives the azimuthal angle in the scattering plane measured from its 
symmetry axis for the final orbit. It is positive for t > 0 and negative for t < 0. 

We also expand the phase di(li) about I ,  in a Taylor series and retain terms 
up to first order in I ,  - I , :  

d'(l,) 1 

@ , ( I f )  = [2d(di(l)/dI)],=,, 

+ $(Ii - I [ ) @ , ( / , )  
where 

corresponds to the classical deflection function for the initial orbit evaluated at I = I f .  
In first order @,(l,) may be replaced by af(lf). We further replace (22; + 1)" by 
(21, + 1)1'2 as this factor does not occur in an exponent and is slowly varying. 

Collecting these various approximations together, equation (10) may be written 
as 

(29) 
1 

F,(O, 2, p) = ~ 
exp [i(l - I')8] y(s, 1 - I ' ,  m') Ylm.(a, p) 8n2 I"' 

and 

e&) = - Of(t) + &(Il)  + 3.. (30) 

The quantity O,(t) is the angular position on the final orbit and qf(t) is the angle 
defined in equation (25). The relation between the different angles is illustrated in 
figure 3. 

The remaining step is to evaluate the function F,(B, a, P )  and the method is to 
use the Fourier expansion (19) to evaluate the summation in equation (29). To do 
this, it is necessary to specify the quantum numbers of the initial and final nuclear 
states more explicitly. Let (11, A l )  and (12, i 2 j  be the orbital angular momentum quan- 
tum numbers of the initial and final bound states $1 and $2. The function G(s, 8, 4) 
defined in equation (8) depends explicitly on the polar angles (e,  4) of the vector 
s. It also has an implicit dependence on the scattering angles CI, /3 through the momen- 
tum functions pl(s) and pf(s) coming from the recoil corrections. In general we write 

G(s, 8, 4 )  = G(s, 0, 4, P )  
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c 2  

Figure 3. Relation between the various angles given in equation (30). 

to show the P dependence explicitly. Then rotational invariance about the z axis 
gives 

~ ( s ,  e, 4, PI = ~ X P C ~ ( A ,  - A , ) ~ I G ( ~ ,  40, P - 4). (31) 

For forward-angle scattering the component of pf perpendicular to the incident direc- 
tion is not very large so that the dependence of G(s) on x and j can be neglected. 
This further approximation to recoil effects should be unsatisfactory for large-angle 
scattering. For this case the alternative approximation discussed in the appendix 
can be used. 

With the forward-angle approximation the dependence of G(s, 0, 4) on 4 is con- 
tained in the exponential factor in equation (31). Then g(s, E - E’, mf) = 0 unless 
m, = i1 - A 2  and the summation (29) can be evaluated using equation (19) to give 

F,(Q, a, PI = $G(s, 0 , O )  iA2-’* X.21 -j.z(x, PI* (32) 
The summation variable has been changed using I’ - E = L and the summation 
extended from - a to + CO. This is possible because we have assumed in $ 2  that 
g(s, I - 1‘, m‘) is small except for 1 - I’ near zero. Collecting equations (27), (28) and 
(32), we obtain 

(474312 h2 
Tfi = - ~ exp [i(jLl - A2)47c] (21 + 1) exp [i(S’(l) + Sf(!))] Jk,k, 411f I 

with 

where the integral in equation (34) is to be taken along a classical orbit with 4 = 0 
and orbital angular momentum 1. 

6. The semiclassical transfer amplitude 

In this section we show that the AI(A2, AI) in equation (33) can be identified as 
a semiclassical transfer amplitude (Brink 1972, Broglia et a2 1974, Anayas-Weiss et 
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al 1974, Pixton 1972). The phase A 4 0  is defined by equation (26). We shall assume 
that the most important contribution to (U, - Vi) is due to the Coulomb term and 
comes from parts of the orbit sf(t) near the point of closest approach, i.e. 

where Z,,, Z,, and Z, are the charges on the cores c 1 ,  c2 and the transferred particle 
x respectively, and d is the distance of closest approach. With this approximation 
the contribution of the first two terms in equation (26) is Qefft/ti where 

is the effective Q value (cf Brink 1972, Broglia et a1 1974). 

assume that 
As A& is important only near the point of closest approach, we shall further 

( s ( t ) y  = ( S ) Z , = ,  

in the second term of equation (24). With these approximations 

(36) 
t 

WO -- C S ( P ~  - ~ ~ ) g ~  + Q e f f l .  h 

As a next step we study the interaction potential A V  (equations (2), (8)) in more 
detail. According to De Vries et al (1974) this consists of a sum of a nuclear part 
AV,, and a Coulomb part AVc given in the prior representations as 

where V/ICn2, + I/:,, is the bound-state potential V2, V,,,,, is the core-core potential 
and Uopt is the optical potential in the final channel. There are analogous expressions 
for A V  in the post representation. We follow De Vries et al and omit the last two 
terms in equation (37) but keep all the terms of equation (38). We approximate 
AV, by 

AVc Vy2x(rz) - Acz (39) 

Ae2 = (Z,,Z,e')/d. (40) 
where 

The replacement of U,0;2,"(rI) - VF,c2(s) by Ac2 can be justified by the following argu- 
ments. As the distance of closest approach in a peripheral collision is greater than 
the sum of the radii of the nuclei, the Coulomb interactions between them may 
be replaced by point-charge potentials 

If the mass of the transferred particle is much less than that of the cores then /rfl  
in the above equation may be replaced by 1 S I .  Also we expect the most important 
contributions to the matrix element (8) to come from Is/ N d. This gives equation 
(40). Collecting these results gives AV(r,) = V2(r2)  - Ae2 in the prior representation. 
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Substituting equations (8) and (36) into equation (34) and assuming that 

P I  PiS/h 

in equation (8), we obtain 

A,) = - Uzl(t)exp [( - it/h)(Qeff + 3mxi2)]  dt (42) h -  il, 
where 

r 
U2 , ( t )  = $:(r2)  AV(v2) $1(v2 - s(t)) exp [(i/h)mXi.v2)] d 3 r 2 .  (43) 

The quantity A1( i2 ,  AI) can be recognised as the semiclassical transfer amplitude of 
Brink (1972). 

In the derivation of equation (33), quantities were expanded about the final orbit 
sf(t). The expansions could also have been made about the initial orbit s,(t) or about 
some average orbit s ( t ) .  

7. Evaluation of transfer amplitudes 

To evaluate 
to be a straight-line trajectory: 

il) in equation (42), we shall approximate the average path s(t) 

s,(t)  = d + ~t (44) 

which is tangential to the orbit s(t) at its point of closest approach. Here d is the 
distance of closest approach, and U is the relative velocity at this point. 

In equation (42) the orbit s(t) lies in the (x, z )  plane. It is convenient to make 
a rotation about y so that the new z axis is parallel to U. The transfer amplitude 
A;(&, 2:)  in this frame of reference is then related to A,(iL2, A,) through the relation 

where a):, are rotation matrices defined according to Brink and Satchler (1968). 

in the prior representation we have 
.4 ; (2 i , i i )  can be evaluated by writing equation (43) in momentum space. Thus 

A E ~  - ik, . d )  

x exp[(-it/h)(Q,,, + +mu2 + hkl,v)]d3kl dt. (46) 

In equation (46) q 1 ( k l )  and q 2 ( k 2 )  are the momentum-space transforms of the bound- 
state wavefunctions $ 1 ( ~ , )  and t,hz(r). The quantity is the energy of the state $ 1 ,  

that is, the eigenvalue of 

+ VlWl  = E l $ , ,  

and AE, is the Coulomb correction given in equation (40). The wavevectors k ,  and 
k 2  in equation (46) are related by 

k 2  = k ,  + m,u/h. (470) 
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The time integration in equation (46) gives a 6 function in k l ,  so that 

1 1 
hv  hz; k 2 ,  = - ~ (Qeff - i m v 2 ) .  (47b) k , ,  = - - ( Q e f f  + +mu2) 

Because of the 6 function, the integral over k l ,  can be calculated easily. Hence 
the four-dimensional integral (46) can be reduced to a two-dimensional integral over 
k , ,  and k l y .  This can be further reduced to a one-dimensional integral by first break- 
ing up the rC/,(k) into radial parts ui (k)  and angular parts consisting of spherical 
harmonics, then changing variables to cylindrical coordinates k L ,  4 and finally inte- 
grating over 4. The expression obtained is given by 

Here J,(kd)  with p = R; - ,ii is a Bessel function. The quantities k l ,  k 2 ,  01, 0 2 ,  
k l ,  and 4 are related as shown in figure 4. Equation (48) is a convenient expression 
for calculating the transfer amplitude because it involves only a one-dimensional 
integral over the variable k L .  The 1 dependence is contained in the distance of closest 
approach d .  If the final orbit is approximated by a Rutherford orbit then d is given 
by 

k f d  = nf + [n,Z + ( 1  + 4)2]1’2 
where k ,  is the final asymptotic wavenumber and n, is the corresponding Sommerfeld 
parameter. The momentum-space radial wavefunctions ii, and ii2 are required, but 
these are the same for each I and need only be calculated once. Equation (48) leads 
to the same expression for A;  in both the post and prior representations because 
the relations (47) make 

(e1 - Ael - h2k:/2m,) = (e2 - Ae2 - h2k:/2m,). 

The effective Q value (35) is related to the binding energies and Coulomb energies 
by 

Qeff = € 2  - €1 - (Ae2 - A<,). 

Figure 4. Relation between the coordinates appearing in equation (47). 
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The transfer amplitude A,(),, ,  A,)  obtained by using equations (45)-(48) is substituted 
into equation (33) to give an expression for Ti. 

The differential cross section for the transfer of a particle from a definite state 
j, to a definite state j ,  is given by 

where 

W 1 n 1 , j 2 n 2 )  = 1 ( l l & ,  sm,l j lnl)  ( 4 3 . 2 ,  smSlj2n2) r f , ( A 2 ,  & I .  (50) 

J,,, J,, are the spins of the final nucleus and the core c2 respectively; (li%,, sm,I j i n i )  
are Clebsch-Gordan coefficients. The (Iu2, il) dependence of T, has been included 
specifically in the notation. 

A1i2mS 

8. Application to the reactions "B + 26Mg 

We have applied the formulae derived in $92-7 to calculate angular distributions 
for the reactions 26Mg(11B, 'OB ) 27  Mg and 26Mg(11B, 'oBe)27A1 at 114 MeV labora- 
tory energy. The transfer amplitudes Af(A2, were calculated from equation (48). 
The radial-state wavefunctions u,(r) were obtained using a Woods-Saxon potential 
with a radius parameter R = r0A1I3 ( ro  = 1.20 fm, A = mass number of nucleus) and 
a diffusivity a = 0.65. The depth of the potential was adjusted in each case to give 
the correct binding energy. The optical potential used to determine the elastic-scatter- 
ing phase-shifts appearing in equation (33) was taken to have a Woods-Saxon form 
for both the real and imaginary parts, the parameters being given by 

VR = 35 MeV 

U R  = 0.8 fm 

TOR = 1.066 fm 

RR(i) = T O R ( I ) ( A ; ' ~  + A:'3) 

6 = 25 MeV 

a, = 0.62 fm 

roI = 1.216 fm 

where VR(,), aR(,], RR(,) are the potential depth, diffusivity and radius parameter respect- 
ively for the real (imaginary) part of the potential. A,, A ,  are the mass numbers 
of the projectile and target respectively. The potentials in the initial and final channels 
differed only in the radius parameter RR(,). 

8.1. Application to the reaction Z6Mg('  ' B ,  ' o B ) 2 7 M g  

Angular distributions for the transfer of a neutron from the lp3,, state in "B to 
the ground and excited states in ,'Mg have been calculated. A detailed study of 
the 1 dependence of the transfer amplitude A,(%,,  A,) and the product 
A,( /? , ,  il) exp( -26(2)) (where 26(1) = S'(2) + af(l)) appearing in equation (33) shows 
some interesting features which can be exploited to our advantage. Figure 5 shows 
that A f ( i 2 ,  decays to zero approximately exponentially as 2 increases for two 
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Figure 5. A comparison of A!(>.,> i.l) calculated from equations (48) and (51) for transfer 
of a neutron from a l p , ,  state in "B to a 2s, state in 27Mg for (i,, AI) equal to  
(A) (0, - 1) and (B) (0, 0). The dotted curve in each case corresponds to the calculation 
using equation (48) while the broken curve corresponds to the parametrised formula 
equation (51). The values of the parameters are A. = 20.9, A = 7.44, lK(O), - 1)l = 1, 

1 K(0,  0)/  = 0,268. 

particular final neutron states. This dependence was found for all final states studied 
and can be approximated quite well by the formula 

' 4 0 2 ,  4 = K ( h >  4) expC(A0 - W A 1  (51) 
where K(Ie2 ,  i1), A. and A are parameters to be fitted. The parameter A turns out 
to be almost independent of ) v l ,  jV2 so that the entire dependence of Al(jL2, iV1) on 
these quantum numbers is contained in KOb2, %J These parameters can be evaluated 
by calculating Al(, i2,  jL1) from equation (48) for two suitable values of 2 .  Figure 6 
shows the product A , ( i 2 ,  A,)  exp( - 2 Imd(1)) calculated exactly and also using the 
exponential approximation (51) for Al(, i2,  2,). The exponential dependence of A ,  pro- 
vides an upper cut-off to the summation in equation (33). A lower cut-off is provided 
by the imaginary part of the phase-shift 6(1) which causes the contribution from 
lower values of 1 to be damped out. 

The 2 dependence of the amplitude A ,  is contained in the distance of closest 
approach d. For a peripheral collision, equations (42) and (43) suggest that this depen- 
dence might be proportional to exp(-yd) where l/y is a typical fall-off distance 
for a radial wavefunction. When the Sommerfeld parameter is small the relation 
between d and I for a Rutherford orbit leads to a dependence of A, on I with the 
form of equation (51) with A = kf/.t .  It remains to estimate a value for y .  For a 
neutron the asymptotic form of the radial wavefunction u, ( r )  is exponential with 
y ,  = ( - ~ ~ 2 m , / f z ~ ) " ~ .  The decay constant y 2  for u2(r)  is related to c2 in the same 
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Figure 6. A comparison of the product A l ( i 2 ,  i,) exp(-2 Im6(1)) calculated using equa- 
tions (48) and (51) for the transfer of a neutron from a l ~ ~ , ~  state in "B to the 2s1,z 
state in 27Mg for (i,, i,) equal to (0, - 1). The full curve corresponds to the calculation 
using equation (48) while the broken curve corresponds to the parametrised formula 
equation (51). 
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Figure 7. A comparison of the angular distributions 
obtained using equation (33) (full curves) with ex- 
periment (full circles) for the transfer of a neutron 
from the lp,,, state in I lB to the ground and 
excited states in "Mg for the reaction 
26Mg(11B, 1oB)z7Mg performed at 114 MeV labora- 

e tory energy. 
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Table 1. 

Spectroscopic factor 

Reaction 
Excitation Present 
energy (MeV) J" LOLA calculation 

26Mg(11B, "B)"Mg 0.0 5' 0.62 0.62 
0.98 3' 0.50 0.37 
1.70 ;+ 0.20 0.22 

26Mg(11B, 'oBe)27A1 0.0 $t 0.15 0.19 
0.84 a+ 0.20 0.18 
6.48 5- 0.20 0.22 

way. The constants y1 or y 2  would be possible choices for y. Because of the equality 
of the amplitudes in the post and prior representations, y should depend symmetri- 
cally on quantities characterising the initial and final states. The discussion in $7 
suggests 

F2 = 2m,(Ac1 - c l ) / h 2  + k f ,  = 2m,(Ac2 - c 2 ) / h 2  + k:, 

as another possible choice for y, The parameters of the reaction discussed in this 
section give kf/v = 6.7. This is in reasonable agreement with the value of A = 7.4 
obtained from a numerical integration of equation (48) (cf figure 5). 

The approximation of Al(Az, il) by the formula (51) simplifies the calculation 
considerably. We used this procedure to evaluate A,(&,  l,) and calculated angular 
distributions. The results are illustrated in figure 7 together with the experimental 
data of Paschopoulos et al (1975). In each case the cross sections are normalised 
by the corresponding spectroscopic factors obtained by comparison with experiment 
and plotted on the same scale as the experimental results. The fit is seen to be 
generally good. 
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Figure 8. A comparison of the product A1(A2, 11) exp( - 2 Im6(1)) calculated using equa- 
tions (48) and (51) for the transfer of a proton from a l~~~~ state in "B to a Id,,, 
state in '-A1 for (&, i1) equal to (-2, - 1). The full curve corresponds to the calculations 
using equation (48) while the broken curve corresponds to the parametrised formula 
equation (51). The values of the parameters are A. = 21.18, A = 6.60, 1 K ( -  2, - 1)l = 1. 
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A comparison of the spectroscopic factors obtained from the present calculations 
is made with those obtained from the exact finite-range code LOLA of De Vries (1973) 
in table 1. The agreement is good. 

8.2. Application to the reaction 1 1 B ( 2 6 M g ,  25A1)10Be 

The method outlined above was also used to obtain angular distributions for the 
transfer of a proton from a p3,2 state to the ground and excited states of 27Al at 
114 MeV laboratory energy. As in the case of neutron transfer, the 1 dependence 
of A1(IL2, A1) is represented quite accurately by equation (51). Figure 8 shows the 
product Ar(A2,  il) exp( - 2 Im6(1)) calculated exactly and with the approximation (51) 
for one particular final state. Angular distributions are compared with experiment 
(Paschopoulos et a/ 1975) in figure 9. The agreement is good. 

9. Conclusions 

The semiclassical formula obtained here provides a simple way for evaluating angular 
distributions. The approximation of the transfer amplitudes by a parametrised for- 
mula seems a promising one, as it greatly reduces the complexity of the calculation. 

U 
\ 

U 

e 

Figure 9. A comparison of the angular distributions 
obtained using equation (33) (full curves) with ex- 
periment (full circles) for the transfer of a proton 
from the lp,  state in "B to the ground and 
excited states in 27AI for the reaction 26Mg(11B, 
'aBe)Z'Al performed at 114 MeV laboratory energy. 
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This could be of advantage when studying reactions between heavy nuclei involving 
large angular momentum transfers. 

An added merit of this formulation is the way in which the various components 
of the transition matrix factorise out and we can ‘see’ how the reaction is taking 
place physically. 

The range of applicability of this formula is, however, restricted to well matched 
reactions, as this is a fundamental assumption in the derivation. Further, because 
of the number of approximations made, it is not very reliable for determining good 
spectroscopic factors, though it does give a reasonable estimate. 
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Appendix 

In deriving equation (33) we have assumed that the scattering takes place at forward 
angles, which led us to the expression (32) for the quantity F,(B, x, P )  defined by 
equation (29). For large-angle scattering we obtain a modified form of equation (33) 
by proceeding as follows. We replace I;,,,.(a, P )  appearing in equation (29) by its 
asymptotic form (13) for large I and expand the cosine, leading to 

1 1 
F,(O,  x, P) = ~ 1 (y(s, 1 -- I‘, vi‘) exp [i(I - l’)B] exp [im’(P + t n ) ]  

871 2nv’sin a I’m’ 

x exp ; -i[$n + ( I  + +)a]) + y(s, 2 - 1’, m’) exp [i(l - /’)e] 
x exp [i7nJ(P + in)] exp {i[$n + (1  + i)~]}). (A.1) 

As before, we change the summation variable using I’ - 1 = L and extend the 
summation from - x to + 3c. Then from equation (19) we’get 

+ exp { - i[(1 + 4)a 
Using equation (31), this becomes 

1 1  
F,(B, a, p) = - _- exp [i(;& - 4 / 3 1  (exp {i[(I + +)a - i n ] }  G(s, 4, 71, 0) 

4 2n,/ssina 

+ exp { - i[(l + 4). - in]) G(s. 0, 0,O)) .  (A.3) 

We may interpret this equation as giving the contributions from the two opposite 
sides of the scattering nucleus corresponding to 4 = n and 4 = 0 respectively. 
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Substituting equation (A.3) into equation (28), which is put back into equation 
( 2 7 )  we get the modified form of Ti for large-angle scattering: 

C(21 + 1)’12 exp [i(6’(2) + S‘(l))] ( 4 7 ~ ) ~ ”  h2 exp [i(%, - A 2 ) p ]  
T,, = - ~ 

k,k, 4Pf 2nJsina i 

where 

and 

For forward-angle scattering we have A;(A2,  2’) = ( -  1)Al-’.2A:(3,2, A,)  and equation 
(A.4) reduces to equation (33). 
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