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Abstract

The optical potential of halo and weakly bound nuclei has a long range part due to the coupling to
breakup that damps the elastic scattering angular distributions at all angles for which the effect of the
nuclear interaction is felt. In charge exchange reactions leading to a final state with a halo nucleus,
the surface potential is responsible for a strong reduction in the absolute cross section. We show how
the halo effect can be simply estimated semiclassically and related to the properties of the halo wave
function. Assuming an exponential tail for the imaginary surface potential we show that the most
important parameter is the diffusenessα of the potential which is directly related to the decay length
γi of the initial wave function byα ≈ (2γi)

−1.  2002 Elsevier Science B.V. All rights reserved.

1. Introduction

In the last years since the advent of Radioactive Beams (RIBs) [1], a new phenomenon
called ‘nuclear halo’ [2] has appeared in nuclear physics. In typical halo nuclei such as
11Be, 19C or 8B [3–11] the valence neutron (proton) or the last couple of neutrons, as
in 11Li, occupy weakly bound single-particle states of low angular momentum (s or p).
The single-particle wave function of a nucleon halo has a long tail which extends mostly
outside the potential well. Then the reactions initiated by such nuclei give large reaction
cross sections and neutron breakup cross sections. Also the ejectile parallel momentum
distributions following breakup can be very narrow, typically 40–45 MeV/c.

Elastic nucleus–nucleus scattering with a radioactive projectile [12] is another reaction
which has been studied to some extent in the attempt to find characteristics that would be
typical for a weakly bound nucleus and would help understanding the halo structure. It has
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been established that the halo breakup is responsible for a damping in the elastic angular
distribution in the range 5◦–20◦ about. Recently charge exchange reactions which produce
radioactive nuclei in the final state, have also been studied. The effect of the halo breakup
is very dramatic in this case, reducing the absolute cross sections by about 50% [13].

All theoretical methods used to describe the above mentioned reactions, require at some
stage of the calculation the knowledge of the nucleus–nucleus optical potential. The optical
potential is the basic ingredient for the description of elastic scattering, but it is important
also in breakup calculations, since we need to take into account the core quasielastic
scattering by the target while the halo neutron breaks up. Furthermore in some breakup
reactions like those initiated from12Be or from a core orbital of11Be it is the ejectile
that most likely is going to have a halo structure [14]. In the charge exchange reaction
11B(7Li, 7Be)11Be the halo nucleus–nucleus optical potential necessary to describe the
final channel [13] has a volume part obtained with a double folding plus a very diffuse
surface term fitted phenomenologically to reproduce the final channel angular distribution.

The problem of the determination of the optical potential for a halo projectile has
already been studied by many authors and a review of the present situation can be found
in [15]. One method is to start from a phenomenologically determined core–target potential
and then the effect of the breakup of the halo neutron is added. This process leads to adding
a surface part to the core–target potential. This new surface peaked optical potential has
been seen to have a quite long range which should reflect the properties of the long tail
of the halo neutron wave function. Such kind of potentials are often called dynamical
polarization potentials.

The papers published so far can be divided in two categories: those in which
the potential is calculated microscopically [16–22], and those in which it is obtained
phenomenologically by fitting elastic or quasielastic data [15,23,24].

In this contribution we propose a new approach to the calculation of the imaginary part
of the optical potential due to breakup. It is based on a semiclassical method described by
Broglia and Winter in [25,26] and used also by Brink and collaborators [27,28] to calculate
the surface optical potential due to transfer and on the Bonaccorso and Brink model for
transfer to the continuum reactions [29–33]. The latter is based on the idea that breakup is
a reaction following the same dynamics as transfer but leading manly to continuum final
states for incident energies per nucleon higher that the average nucleon binding energy. The
calculations are almost completely analytical and we will show that a simple approximated
formula can be obtained which will help us discussing the origin of the long range nature
of the potential and its dependence on the incident energy as well as on the initial neutron
binding energy. The characteristics of our potential are consistent with those of potentials
obtained with other methods, in particular our theory is close in spirit to the eikonal method
of Canto et al. [19] and application to the description of experimental data is encouraging.

2. Theory

The method we will present here is based on the extraction of an optical potential from
the calculation of a phase shift.
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The elastic scattering probability isPel = |SNN|2, given in terms of the nucleus–nucleus
S-matrix. We know that∣∣SNN(b)

∣∣2 = e−4δI (b). (1)

In a semiclassical approximation [25], the imaginary part of the nucleus–nucleus phase
shift δI is related to the imaginary part of the optical potential by

δI (b)= − 1

2h̄

+∞∫
−∞

(
WV

(
r(t)

) +WS

(
r(t)

))
dt, (2)

where the volume potential is responsible for the usual inelastic core–target interaction,
while the surface term takes care of the peripheral reactions like transfer and breakup.
r(t)= b+vt is the classical trajectory of relative motion for the nucleus–nucleus collision.

According to [25–28] the surface optical potentialWS(r(t)) due to transfer can be
related to the transfer probability by

+∞∫
−∞

WS

(
r(t)

)
dt = − h̄

2

∑
(i,n)

P (i)
n , (3)

whereP (i)
n are the transfer probabilities in the various channelsn. In the traditional

formulation the index (i) stands for stripping and pickup to bound states, here we extend it
to hold for breakup reactions in which the final neutron state is in the continuum. Breakup
of both absorptive and diffractive type will be included. Absorptive breakup has often
been called stripping within the halo community. The justification of the use of Eq. (3) to
calculate the imaginary potential due to breakup is simply given by the analogy between
breakup and transfer as expressed by the transfer to the continuum model introduced in
Refs. [29–33]. There it was shown that the formalism for transfer to bound states goes
over transfer to the continuum in a natural way if the kinematics of the reaction is taken
into account correctly within a time dependent approach which ensures neutron energy
conservation.

Using Eqs. (2) and (3), in (1) the nucleus–nucleusS-matrix, in the case of a halo
projectile, can be written as

|SNN|2 = |SCT|2e−Pbup, (4)

whereSCT takes into account all core–target interactions while the term e−Pbup depends
only on the halo neutron breakup probability. For a halo nucleus at high incident energy
the transfer probability is going to be much smaller than the breakup probability, therefore
the surface potential has been identified here with the breakup potential.

In order to obtain the surface imaginary potential equation (3) should be calculated as an
identity in the distance of closest approach, which amounts to require thatWS(r) be a local,
angular momentum independent function. We remind the reader that since we are using a
semiclassical method, the nonlocality, which is in principle a characteristic of microscopic
optical potentials has been transformed into an energy dependence [34].

Now we discuss the hypothesis leading to Eq. (4). The reactions with halo projectiles we
are concerned with in this paper have been performed at energies well above the Coulomb
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barrier where many inelastic channels open at about the same distance of closest approach.
The effect of the breakup is most important at large distances (b > Rs ) of closest approach,
where it represents the dominant reaction mechanism. If the breakup probability is needed
at smaller impact parameters, then the values calculated by perturbation theory, have to
be multiplied by the core survival probability, as discussed in Eq. (V.8.1) of Broglia and
Winther [25] and also used in relation to halo breakup by several authors. The effect of all
inelastic channelsn different from the one we are interested in, can be taken into account
by introducing a damping factorP0. Therefore the breakup probabilityPbup at all distances
can be defined as

Pbup = pbup

∏
n

(1− pn)≈ pbup exp

(
−

∑
n

pn

)
= pbupP0. (5)

Each elementary inelastic probabilitypn and breakup probabilitypbup is small andpbup

in particular, can be calculated in time dependent perturbation theory, as done in [29]. In
this paper we will treat only the nuclear breakup channels, which are important for light
targets. In the case of heavy targets also the Coulomb breakup has to be taken into account.

In reactions with halo projectiles the damping factorP0 has also been referred to as the
core survival probability after the halo breakup or as the core elastic scattering probability.
The breakup probability Eq. (5) integrated over the impact parameterb has been widely
used in the literature to get total breakup cross sections.

The breakup probabilitypbup with the indexbup standing for one neutron breakup can be
obtained by integrating the neutron energy or momentum spectrum as given, for example,
in [33]:

pbup ≈
∫

dεf
∑
lf

(∣∣1− 〈Slf 〉∣∣2 + 1− ∣∣〈Slf 〉∣∣2)B(lf , li). (6)

It is important to remark that the above expression takes into account to all orders
the neutron target final state interaction via an energy and angular momentum dependent
optical model wave function of the breakup neutron. In this way neutron elastic scattering
and absorption are treated consistently via an unitaryS-matrix. Eq. (6) is the neutron
transfer probability from a definite single-particle state of energyεi , momentumγi =√−2mεi/h̄, and angular momentumli in the projectile to all possible final continuum
states of energyεf , momentumkf = √

2mεf /h̄. It is the sum of the transfer probabilities
to each possible finallf -state for a given final energyεf . In Ref. [30] it was shown that the
first term of Eq. (6), proportional to|1−〈Slf 〉|2, gives the neutron elastic breakup spectrum
while the second term proportional to the transmission coefficientT = 1 − |〈Slf 〉|2 gives
the absorption spectrum. This term contains contributions from inelastic scattering of the
breakup neutron by the target nucleus and also from compound nucleus formation.

The factorB(lf , li) is an elementary transfer probability which depends on the details
of the initial and final states, on the energy of relative motion and on the distance of closest
approachb between the two nuclei. Its explicit expression reads:

Blf ,li = 1

2

[
h̄

mv

]2
m

h̄2kf
(2lf + 1)|Ci |2 e−2ηb

2ηb
Pli (Xi)Plf (Xf ), (7)
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where

Xi = 2(η/γi)
2 − 1, Xf = 2(η/kf )

2 + 1.

Also

k1 = −εi − εf + 1
2mv

2

h̄v
and k2 = −εi − εf − 1

2mv
2

h̄v

are thez components of the neutron momentum in the initial and final state, respectively.
η2 = k2

1 + γ 2
i = k2

2 − k2
f is the modulus square of the transverse component of the neutron

momentum.mv2/2 is the incident energy per nucleon at the distance of closest approachb

for the ion–ion collision.|Ci |2 is the asymptotic normalization constant of the initial state
wave function andPli andPlf are Legendre polynomials coming from the angular parts
of the initial and final wave functions, respectively, [29]. Coulomb breakup can be taken
into account as well, following the formalism of [37]. One advantage of calculating the
breakup probability by Eq. (7) is that no sudden approximation hypothesis is made and
thus the method is valid for any initial separation energy.

In Eq. (6) the main dependence on the core–target distance of closest approachb is
contained in the exponential factor e−2ηb. Equation (7) has a maximum in correspondence
to the minimum value ofη = γi . Therefore after integrating overεf the b-dependence
of the breakup probabilitypbup(b) will still be of the exponential formpbup(b) ≈ e−b/α

with α ≈ (2γi)−1 whereγi is the decay length of the neutron initial state wave function.
We now assume at large distances, whereP0 = 1 the same exponential dependence for
the absorptive potential,WS(r) = W0e−r/α and as indicated earlier on, a straight line
parameterization for the trajectoryr(t)= b + vt , then Eq. (3) reads:

+∞∫
−∞

WS(b, z)dz= − h̄v

2
pbup(b). (8)

The LHS can be approximately evaluated as

+∞∫
−∞

WS(b, z)dz=W0

+∞∫
−∞

e−(
b+ z2

2b
)
/α dz=W0

√
2πbαe−b/α, (9)

where we assumedb 
 z in the second step. Equating the RHS of Eqs. (8) and (9) and
renaming the distanceb asr gives

WS(r) = − h̄v

2
pbup(r)

1√
2παr

. (10)

The exponential form ofWS(r) implies that the strength of the breakup potential be a
function ofr. However we know that in nuclear induced peripheral reactions like breakup
and transfer most of the cross section comes from impact parameters around the strong
absorption radius. Therefore writingpbup(r) ≈ pbup(Rs)e−(r−Rs)/α we finally get that
Eq. (10) can be written as

WS(r)≈W0e− r−Rs
α , (11)
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where

W0 ≡W0(Rs)= − h̄v

2
pbup(Rs)

1√
2παRs

, (12)

which gives an estimate of the strength parameter of the surface breakup potential at the
typical distanceRs .

Equation (11) has a number of interesting features. First of all it shows explicitly that
the long range nature of the breakup potential originates from the large decay length
of the initial state wave function. For a typical halo separation energy of 0.5 MeV,
α = (2γi)−1 = 3.2 fm, while for a ‘normal’ binding energy of 10 MeV,α = 0.7 fm as
expected. Therefore the parameterα will depend only on the projectile characteristics and
not on the target. Furthermore looking at Eqs. (11) and (12) we notice that for a fixed
initial state the strength of the potential will be larger the smaller the neutron binding
energy. On the other hand, for a fixed binding energy the potential strength will be lower
the higher the initial angular momentum. Finally the strength parameterW0 is seen to be
energy dependent from different sources. If we considerRs , the typical distance at which
the strength is calculated, to be the same at all energies, then the energy dependence of
W0 is given by its linear dependence on the velocity of relative motionv, which is a
function of the projectile–target combination. Another energy dependence is trough the
breakup probability, whose behaviour in turn is determined in part by the neutron–target
energy dependent optical potential. At the large distances we are interested in, the overall
energy dependence of the breakup probability is an exponential decrease with incident
energy due to the dependence onv and on the neutron–target optical potential. Therefore
W0 is expected to rise up to about 40AMeV and then to decrease at higher energies.
Another interesting way to look at the behaviour of the strengthW0 is to consider instead
explicitly that the strong absorption radiusRs is itself decreasing with energy. If we take
this dependence into account, thenW0 increases up to about 80AMeV and then starts to
decrease. However the precise energy dependence ofRs requires an accurate knowledge
of the energy dependence of the core–target volume optical potential. This is beyond the
scope of the present work, therefore we will discuss the energy dependence of the surface
potential at a fixed distance large enough to have unit core survival probability at all
incident energies.

It is very well known that the dynamical polarization potential due to surface reactions
gives rise also to a correction to the real part of the nucleus–nucleus optical potential. In
terms of Feshbach potential both the real and imaginary parts of the dynamical polarization
potential come from the second order term and therefore the real polarization term gives
a correction to the first order term, which is purely real and it is often referred to as the
folding potential. The relative magnitude of this correction with respect to the first order
real potential depends on the system involved and on the incident energy. One characteristic
of the real dynamical potential, discussed by many authors is to become repulsive at some
energies. The imaginary polarization potential on the other hand is by definition negative
from Eq. (10). The real dynamical potential is expected to have the same exponential
dependence as the imaginary part. The simple and consistent way we have used here to
obtain its strength is by applying a dispersion relation.
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2.1. Dispersion relation

The theoretical optical potential is highly nonlocal and energy dependent. In most
applications it is replaced by an equivalent local potential

U(r,E)= VR(r,E)+)V (r,E)+ iW(r,E).

The termVR is usually associated with the folding potential and contains a spurious energy
dependence due to the finite range of the underlying nucleon–nucleon effective interaction
and Pauli principle. We have further assumed that the imaginary potential splits into
contributions coming from coupling to breakup (WS) and other inelastic excitations (WV )
so that

W(r,E)=WV (r,E)+WS(r,E).

The real part of the dynamic polarization potential (DPP) arising from coupling of elastic
channel to the breakup is calculated from the dispersion relation

)V (r,E)= P

π

∞∫
0

WS(r,E
′)dE′

E′ −E
. (13)

The numerical evaluation of this term requires the knowledge of the imaginary potential
at all energies. Our model provides accurate values in a limited range of energiesE <

1600 MeV for which the nucleon–target potential is known with reasonable accuracy. At
higher energies we assume a reasonable energy dependence of the formWS ∼E−1 in such
a way that the integral in Eq. (13) converges and it can be evaluated accurately for the
energies of interest. An algebraic exact model similar to that used in [35] has been used to
check the numerical accuracy.

3. Results

In order to sample the quantitative accuracy of the simple analytical model presented
above we discuss now some numerical examples. The potentials we will discuss derive
from the breakup of the 2s1/2 and 1p1/2 states of11Be, with separation energies 0.5 and
0.18 MeV, respectively. It has been shown that during the charge exchange reaction of [13],
11Be can be populated in the final channel in either the ground state or the first 1/2− excited
state. There are in the literature a number of papers discussing the breakup potential for a
11Li projectile, among others [15,18,19,22].11Be breakup from the 2s has been discussed
in [20,21]. However the potential due to breakup of the 1p1/2 bound excited state has never
been discussed before.

The neutron–target optical potential used here to calculate the breakup probabilities is
the same as in [36]. The core survival probability has been parameterized as

P0(b)= |SCT|2 = exp
(− ln2e[(Rs−b)/a]), (14)

wherea = 0.6 fm and the strong absorption radiusRs = 1.4(A1/3
P +A

1/3
T ) fm.
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Fig. 1. Radial shape of the surface imaginary potential for the system7Be+ 11Be due to breakup from the 2s
and 1p1/2 states of11Be atE = 57 MeV (dashed lines) andE = 550 MeV (solid lines). Lines with symbols are
calculated assumingP0 = 1 in Eqs. (3) and (5).

We start by showing in Fig. 1 the radial shapes of the potentials calculated for the
breakup from the 2s and 1p1/2 states of11Be in the interaction with7Be relevant to
the charge exchange reaction of [13]. In both figures we show results for two laboratory
scattering energies for the ion–ion system:E = 57 MeV (dashed lines) andE = 550 MeV
(solid lines). The lines with symbols correspond to the exponential approximation for the
potentials, Eqs. (10)–(12) while the lines without symbols are obtained from Eq. (10)
using for the breakup probability thePbup ≈ pbupP0 definition valid at all distances. Our
results show a strong dependence of the potential on the incident energy (compare solid
and dashed lines) and also a quite strong state dependence. In fact in the case of thes-state
the diffuseness of the potential is about 2.3 fm, while for thep-state is about 2 fm while the
strength for thes-state is about five times more than for thep-state although the binding
energy is larger. This is due to the fact that forl > 0 states the effect of the centrifugal
barrier hinders breakup. The values of the diffuseness are slightly smaller than the estimate
given in Section 2 because of the integration over the neutron final energy of the breakup
probability. Finally we would like to stress that the internal part of the surface polarization
potential has no effect on the nucleus–nucleus scattering as it can be seen also from the
nucleus–nucleusS-matrix of Fig. 2 which we are going to discuss next.

Another important application is in fact to see how the elastic scattering total probability
changes as a function of the impact parameter or angular momentum when there is a strong
breakup probability. In Fig. 2 we show the core–targetS-matrix, SCT of Eq. (14) (solid
line) and the nucleus–nucleusS-matrix SNN (dashed line) from Eq. (4), calculated with
Pbup = pbup, which contains the effect of the halo breakup. In this case the exponential
approximation for the surface potential is used at all distances. At a fixed impact parameter
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Fig. 2.S-matrix values as a function of the impact parameter for the system11Be+ 9Be at 50AMeV. Solid line
is |SCT|2, dashed and dotted lines are|SNN|2 calculated with the two prescriptions for the breakup probability
discussed in the text.

(or angular momentum) the effect of the breakup is to reduce the elastic probability given
by the modulus square of theS-matrix. The unitarity limit is attained at much larger
b-values and the reaction cross section receives significant contributions from a large range
of impact parameters. This result is analogous to the discussion reported in [14]. The
reduction is more pronounced at the impact parameters larger than the strong absorption
radius. The value of the strong absorption radius does not change appreciably because it
is mainly determined by the core–target interaction which is strongly absorptive. On the
other hand, it is in a sense obvious that surface reactions such as breakup would change the
S-matrix behaviour at large impact parameters where they represent the dominant reaction
channels.

The dotted line is theS-matrix also calculated from Eq. (4) but this time we have used
Pbup = pbupP0 with P0 given by Eq. (14). With this prescription one gets an imaginary
breakup potential valid at all distances. The fact that the twoS-matrices (dashed and dotted
line) are hardly distinguishable is a proof of the fact that elastic scattering is not sensitive
to the internal part of the polarization potential.

Fig. 3 contains the energy dependence of the imaginary and real strengths of the
dynamical polarization potential due to breakup of the halo neutron in the reaction
11Be + 9Be. The solid line gives the energy dependence of the imaginary potential
calculated at the fixed distance 7 fm which is slightly larger than the sum of the projectile
and target radii. This distance is about the smallest at which absorption into channels other
than breakup can be neglected and the core survival probability isP0 = 1. The real part of
the potential obtained from the dispersion relation is given by the dashed line. It shows a
change of sign which gives a repulsive real potential from around the energy (70AMeV)
at which the imaginary part starts to have a clear decrease toward zero. This is the obvious
and consistent result of having applied the dispersion relation. Physically it means that the
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Fig. 3. Energy dependence of the strengths of real and imaginary polarization potential for the system11Be+ 9Be
at the distance 7 fm.

mean field will prevent from entering the interaction region those waves that cannot be
absorbed.

Since the optical potential has one of its most interesting application in the calculation
of elastic scattering angular distributions, we finally show in Fig. 4(a) an example for the
reaction11Be+ 12C at 49.3AMeV. The data are from P. Russel-Chomaz et al. [39]. The
optical model parameters for the volume parts of the bare potential are taken from [21] and
were fitted to10Be elastic scattering data at 59.4AMeV. They are:

VR = 123 MeV, rR = 0.75 fm, aR = 0.8 fm,

WV = 65 MeV, rI = 0.78 fm, aI = 0.8 fm.

In our case we have defined the real and imaginary radii by multiplying the radius
parameters by(111/3 + 121/3), in order to take into account in the volume potential the
presence of the extra neutron with respect to the core. The consequences of this choice are
discussed in the following in relation to Fig. 4(b).

In Fig. 4(a) the solid line is the calculation with the bare volume potential. The dashed
line is obtained instead including the surface imaginary potential calculated according to
the method proposed in this work. The large diffusivity in the breakup absorption leads to
changes in theS-matrix in all partial waves as discussed above and the angular distribution
is damped. The inclusion of the real polarization potential (dotted line) gives a negligible
modification to the quality of the fit since its strength (−0.15 MeV) at this incident energy
(50AMeV) is very small with respect to the volume part. Also variations in the strength
of the imaginary surface potential up to about 30% result in negligible differences in the
angular distribution. As expected the effect of breakup is to suppress scattering at all angles
larger than about 5◦. The angular distribution shows the usual Fraunhofer oscillations at
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Fig. 4. (a) Elastic scattering angular distribution for the reaction11Be+ 12C. Solid line is with a bare volume
imaginary potential. Dashed line is obtained adding the imaginary surface potential calculated in this work. Dotted
line includes also the real part of the surface potential. (b) Solid line is obtained with the same bare potential as
in (a), the dotted line is obtained by decreasing both the real and imaginary potential radii as explained in the text,
while the dot-dashed line is obtained decreasing only the imaginary potential radius.

small angles followed by an almost exponential decrease of the cross section due to a far
side dominance. No Airy like oscillation are seen since the absorption is already too strong.

In order to clarify the dependence of the calculated angular distribution on the choice
of the radius parameters of the bare potential, in Fig. 4(b) we show again the data and
the angular distribution with the bare potential as in Fig. 4(a) (full line), plus the angular
distribution with the bare potential in which the radii have been calculated from the above
radius parameters but multiplied by(101/3 + 121/3) (dotted line). This is to show that, as
expected, a small decrease in the radius of the optical potential would give a slight shift
toward larger angles. With the dot-dashed line we show instead the calculation done with
the radii chosen as

RR = rR
(
111/3 + 121/3) fm and RI = rI

(
101/3 + 121/3) fm.

This calculation agrees very well with the full line calculation up to about 10◦. For larger
angles only a change in the magnitude of the cross section is seen while there is no shift in
the peak position, which is then determined by the radius of the real volume potential.

Another significant effect of the imaginary surface potential is seen in the calculated
total reaction cross section given in Table 1. We obtain an increase of 150 mb with respect
to the bare (no breakup) optical potential mainly due to an increase of about 10% in the
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Table 1
Volume integrals per number of interacting nucleon pairs and rms radii of the Woods–Saxon potential used in
Fig. 2 for11Be+ 12C scattering

Pot. JVR [MeV fm3] RVR
[fm] JW [MeV fm3] RW [fm] σNN [mb]

Vopt 235 3.964 145.6 4.257 1255
Vopt + iWS 235 3.964 151.7 4.598 1399

The last column gives the total reaction cross section. HereVopt = VR + iWV .

rms radius and 5% in the volume integral of the absorption. The increase in the reaction
cross section is very close to the total breakup cross sectionσbup ≈ 170 mb expected at
this energy [38]. This is consistent with the hypothesis thatPbup is small in Eq. (4). In fact
expanding the exponential in Eq. (4) to first order inPbup and integrating over the impact
parameterb one immediately finds

σNN ≈ σCT + σbup. (15)

In the case of the charge exchange reaction the effect of the surface breakup potential
is more dramatic, giving a decrease in the cross section of about 50% [13] necessary to fit
the data.

4. Conclusions

In conclusion we have presented a simple analytical method to obtain the surface
component of the real and imaginary parts of the nucleus–nucleus optical potential in the
case in which one partner of the reaction is a halo or weakly bound nucleus. The main
purpose here was to relate the characteristics of the potential to the special properties of
the breakup channel for weakly bound nuclei. The evaluation of the potential amounts in
fact just to the calculation of the breakup probability. If breakup from core excited states is
to be included, then it suffices to sum up the relative probabilities according to Eq. (3).

The method is an extension of that previously used to calculate microscopically the
effect of transfer channels on the imaginary potential. The shape of the surface imaginary
potential and its parameters are determined univocally by the shape of the breakup form
factor. An interesting result is that the diffuseness of the potential reflects the decay length
of the neutron wave function entering breakup and therefore depends mainly upon the
projectile characteristics, but in a model independent way. The strength parameter has
a rather complicated but physically understandable energy dependence which we have
discussed. At a given distance the uncertainty on the strength would be of about 30%,
reflecting mainly the model dependence of the breakup probability values [36]. The real
potential has been obtained via the use of a dispersion relation and shows the interesting
property of becoming repulsive when the imaginary part starts to decrease due to the
closing up of the breakup channel when the energy becomes too high. Sample calculations
have shown that the potential proposed here is consistent with other theoretical models
Refs. [18,19,21] for similar, light halo systems and also with existing experimental data.
Furthermore we have given an explicit justification for the long range of the polarization
potential as coming from the small decay length of the initial neutron wave function.
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